Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.6, 756-763, 1995
투과증발용 평판형 모듈 내에서의 농도분극현상에 관한 연구
Studies on the Concentration Polarization Phenomena for the Plate-and-Frame Type Pervaporation Module
본 논문에서는 투과증발용 판틀형 모듈 내에서 막의 고유성질인 선택도 및 투과도와 원액의 공급속도, 조업온도, 모듈의 구조 등에 따라 일어날 수 있는 농도분극 현상에 대하여 수정된 Film theory 모델을 이용하여 농도분극효과, 막표면에서의 농도, 고유선택도, 그리고 실제투과도 등을 에탄올:물=95:5 용액에 대하여 이론적으로 계산하여 논하였다. 이를 위하여 모듈 구조에 있어서 dh/L=0.007-0.056, 투과도 1-10kg/m2hr, 선택도 500-50000, 조헙온도 70,80℃, 원액의 유속NRe=100-50000의 값들이 사용되어졌다. 계산 결과, 유속이 층류 범위에서 모듈내의 통로 높이를 낮게, 유속은 빠르게, 그리고 조업온도는 높게 하는 것이 농도분극현상을 줄일 수 있으며, 또한 선택도가 클 경우 농도분극현상에 많은 영향을 미치게 되고 투과도에서는 현재의 상용화막 수준인 1kg/m2hr에서는 거의 영향이 없는 결과를 얻었다.
The concentration polarization effects for the ethanol : water=95:5 solution were calculated theoretically in terms of the solute concentrations on the membrane wall, intrinsic separation factors and the real permeation rates by the modified Film model for the plate-and-frame type pervaporation module. In order to calculate the concentration polarization effects, the variations of channel hight, permeability, separation factor, and feed flow rate were considered. In the case of the laminar flow to the module, it would be better that the channel height is lower and the feed flow rate faster, and the operation temperature higher to decrease the concentration polarization degree. And also, in case where the separation factor is high enough, it would affect the concentration polarization phenomena. The permeability 1kg/㎡hr which could be the flux of the present commercialized module, results in no effect on the concentration polarization phenomena. For the turbulent flow, the concentration polarization effects were slightly better.
[References]
  1. Haraya K, Hakuta T, Yoshitome H, Kimura S, Sep. Sci. Technol., 22(5), 1425, 1987
  2. Haraya K, Shindo Y, Hakuta T, Yoshitome H, J. Chem. Eng. Jpn., 19, 186, 1986
  3. Suzuki S, Kimura S, J. Atomic Energy Soc., 26, 802, 1984
  4. Psaume R, Aptel P, Aurelle Y, Mora JC, Bersillon JL, J. Membr. Sci., 36, 373, 1988
  5. Rautenbach R, Herion C, Meyer-Blumenroth U, Chapter 3, Engineering Aspects of Pervaporation: Calculation of Transport Resistance, Module Optimization and Plant Design in "Pervaporation Membrane Separation Processes," Edited by Huang, R.Y.M., Elsevier Science Publishers, B.V., Amsterdam, 1991
  6. Maeda Y, Kai M, Chapter 9. Recent Progress in Pervaporation Membranes for Water/Ethanol Separation in "Pervaporation Membrane Separation Processes," Edited by Huang, R.Y.M., Elsevier Science Publishers, B.V., Amsterdam, 1991
  7. Chemical Engineer's Handbook, Edited by J. Perry, McGraw-Hill