Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.6, 720-733, 1995
H2/CO혼합기체의 고압흡착평형에 관한 연구
A Study on Adsorption Equilibrium of H2/CO Mixture at Elevated Pressure
흡착평형에 대한 정보로부터 zeolite 5A는 CO 기체에 대한 선택성이 매우 크다는 것을 확인하였으며, 이에 대한 흡착분리공정에의 응용가능성을 확인하였다. 또한 혼합물에대한 흡착평형 예측모형(확대형 Langmuir 모형, LRC 모형, D-R 모형 그리고 W-빈자리 용액모형) 중 LRC 모형이 가장 우수한 예측성을 보였으며 이 모형의 각 매개변수를 온도의 함수로 적절히 표현가능하였다. 또한 LRC 모형은 수학적으로 간단하고, 흡착량에 대해 양함수형을 띄고 있기 때문에 파과 및 PSA 공정모사와 같은 흡착분리공정을 해석하기 위한 흡착평형항에 대한 이용에 가장 적합함을 확인하였다.
The results of adsorption equilibria of pure gases(H2CO) as well as their binary mixture on pelletized 5A zeolite showed strong selectivity for CO and found applicability to adsorption processes. For mixed gas adsorption isotherm, extended Langmuir model, loading ratio correlation(LRC), Dubinin-Radush-kevich model, and Wilson-vacancy solution model(W-VSM) were compared, and the LRC model showed the smallest average relative deviation and temperature dependencies of its parameters could be suitably expressed by an appropriate mathematical form. Also this model, although not thermodyamically rigorous, was the most useful isotherm for the simulation of breakthrough curve and PSA process because of its mathematical simplicity, noniterative procedure for the calculation and reduction of computation time.
[References]
  1. API: "Technical Data Book-Petroleum Refining," 3rd Ed., Chap 1-6, 1976
  2. Breck DW, "Zeolite Molecular Sieves," John Wiley & Sons, 1974
  3. Chen Yd, Ritter JA, Yang RT, Chem. Eng. Sci., 45, 2877, 1990
  4. Cochran TW, Kabel RL, Danner RP, AIChE J., 31, 268, 1985
  5. Golden TC, Sircar S, J. Colloid Interface Sci., 162(1), 182, 1994
  6. Grant RJ, Manes M, Ind. Eng. Chem. Fundam., 5, 490, 1966
  7. Kaul BK, Sweed NH, "Fundamentals of Adsorption," New York, Eng. Foundation, 249, 1984
  8. Lewis WK, Gilliland ER, Chertow B, Cadogan WP, Ind. Eng. Chem., 42, 1319, 1950
  9. Loughlin KF, Hasanain MA, Abdul-Rehman HB, Ind. Eng. Chem. Res., 29, 1535, 1990
  10. Lucassen-Reynders EH, Prog. Surf. Membr. Sci., 10, 253, 1976
  11. Mehta S, Danner RP, Ind. Eng. Chem. Fundam., 24, 325, 1985
  12. Miller GW, Knaebel KS, Ikels KG, AIChE J., 33, 194, 1987
  13. Myer AL, Prausnitz JM, AIChE J., 11, 121, 1965
  14. Nishiumi H, "The 2nd Korea-Japan Symp. on Sep. Tech.(1st-2nd June)," Seoul, Korea, 294, 1990
  15. Reich R, Zeigler WT, Rogers KA, Ind. Eng. Chem. Process Des. Dev., 19, 336, 1980
  16. Reid RC, Sherwood TK, "The Properties of Gases and Liquids," 2nd Ed., New York, McGraw-Hill, 1987
  17. Ritter JA, Yang RT, Ind. Eng. Chem. Res., 26, 1679, 1987
  18. Ross S, Olivier JP, "On Physical Adsorption," Interscience, New York, 1964
  19. Ruthven DM, Loughlin KF, J. Chem. Soc.-Faraday Trans., 68, 696, 1972
  20. Ruthven DM, "Principles of Adsorption & Adsorption Processes," Wiley-Interscience, 1984
  21. Sandler SI, "Chemical and Engineering Thermodynamics," 2nd ed., John Wiley, 1989
  22. Suwanayuen S, Danner RP, AIChE J., 26, 68, 1980
  23. Suwanayuen S, Danner RP, AIChE J., 26, 76, 1980
  24. Wakasugi Y, Ozawa S, Ogino Y, J. Colloid Interface Sci., 79(2), 399, 1981
  25. Yang RT, "Gas Separation by Adsorption Processes," Butterworths, 1987
  26. Yuxun Y, Hongkui Z, "Fundamental s of Adsorption," Kodansha, 1993
  27. 조찬휘, "기체혼합물의 흡착평형데이터 예측에 관한 연구," 연세대학교 박사학위논문, 1992