Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.6, 684-692, 1995
공중합에서 확산이 율속하는 반응속도식의 모델링 I.공중합 속도식의 단순화 및 전환율의 계산
Modeling of Diffusion-Controlled Kinetics in Copolymerization-I. Simplification of Copolymerization Kinetics and Calculation of Conversion
SAN(styrene-acrylonitrile) 수지를 생산하기 위한 괴상 공중합의 속도식들을 간략하게 표현하기 위하여 PK-RCM(pseudo-kinetic rate constant method)을 확장하여 적용하였다. 확산에 의하여 율속되는 성장반응과 정지반응을 자유부피 이론을 이용하여 정량화하였다. 또한 사슬길이에 의존하는 정지반응을 고려할 수 있도록 하였다. 개발된 공중합 모델을 이용하여 개시제 농도가 0.01과 0.05M이고, St(styrene)의 초기 몰분율이 0.5, 0.6 및 0.8일 때의 수치모사한 결과를 실험자료와 비교.검토하였다. 개발한 수식모델이 공중합의 실험결과를 잘 모사하였다.
The pseudo-kinetic rate constant method is extended and applied to the rate equations for bulk copolymerization of styrene and acrylonitrile. We use free volume theory to quantify the diffusion-control-led propagation and termination reactions, and also consider the effect of the chain length dependent termination reaction. The simulation results from the developed model are compared to experimental data obtained under different copolymerization conditions covering wide ranges of initial mole fraction of styrene f10(0.5, 0.6 and 0.8) at two levels of AIBN(2.2`-azobisisobutyronitrile)initiator concentration(0.01 and 0.05M). It is demonstrated the present model and describe very well the experimental data under various operating conditions.
[References]
  1. Yoo KY, Hwang WH, Back JE, Rhee HK, Proc. '94 Korean Automatic Control Conf., 207, 1994
  2. Yoo KY, M.E. Thesis, Seoul National Univ., Seoul, Korea, 1995
  3. Mayo FR, Lewis FM, J. Am. Chem. Soc., 66, 1594, 1944
  4. Trommsdorff E, Kohle H, Lagally P, Makromol. Chem., 1, 169, 1947
  5. Marten JL, Hamielec AE, J. Appl. Polym. Sci., 27, 486, 1982
  6. Soh SK, Sundberg DC, J. Polym. Sci. A: Polym. Chem., 20, 1299, 1982
  7. Soh SK, Sundberg DC, J. Polym. Sci. A: Polym. Chem., 20, 1315, 1982
  8. Soh SK, Sundberg DC, J. Polym. Sci. A: Polym. Chem., 20, 1331, 1982
  9. Soh SK, Sundberg DC, J. Polym. Sci. A: Polym. Chem., 20, 1345, 1982
  10. Tobita H, Hamielec AE, Polymer, 32, 2641, 1991
  11. Doi M, Edwards SF, "The Theory of Polymer Dynamics," Clarendon Press, Oxford, U.K., 1986
  12. Lomellini P, Lavagnini L, Rheol. Acta, 31, 175, 1992
  13. Xie T, Hamielec AE, Makromol. Chem. Theory Simul., 2, 421, 1993
  14. Garcia-Rubio LH, Lord MG, MacGregor JF, Hamielec AE, Polymer, 26, 2001, 1985
  15. Atherton JN, North AM, Trans. Faraday Soc., 58, 2049, 1962
  16. Bicerano J, "Prediction of Polymer Properties," Marcel Dekker Inc., New York, 1993
  17. Lomellini P, Rossi AG, Maromol. Chem., 191, 1729, 1990
  18. Hill DJT, O'Donnell JH, O'Sullivan PW, Macromolecules, 15, 960, 1982
  19. Brandrup J, Immergut E, "Polymer Handbook," Interscience, New York, 1971
  20. Yaraskavitch IM, Brash JL, Hamielec AE, Polymer, 28, 489, 1987
  21. Tirrell M, Gromley K, Chem. Eng. Sci., 36, 367, 1981