Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.6, 763-768, 2002
고정화 질화세균을 이용한 저농도 암모니아 폐수의 고도처리
Advanced Wastewater Treatment of Low Concentration Ammonia Using the Immobilized Nitrifier Consortium
본 실험은 polyvinyl alcohol을 이용하여 고정화한 질화세균을 공기부상식 생물반응기에 충진시켜 저농도의 암모니아성 질소(total ammonia nitrogen, TAN)를 제거시켰다. 공탑 공기 유속 0.83 cm/sec에서 제거속도는 316.6±7.2 g/m(3)ㆍday, 제거효율은 92.8±2.2%였다. 수력학적 체류시간이 0.5시간에서 0.05시간으로 감소함에 따라 제거속도는 점점 증가하였으며, 제거효율은 체류시간이 증가함에 따라 증가하였고 체류시간 0.35시간 이상에서 최대 제거효율을 나타냈다. 질산화의 최적 온도는 30 ℃였으며 제거효율은 95.5±1.5%였고 10 ℃의 저온에서도 79%의 제거효율을 보여줌으로써 저온에서의 질산화가 가능하며, 반응기 내 pH7-9에서 제거속도와 제거효율이 각각 310±10 g/m(3)ㆍday와 94±3%를 유지했다.
This study was performed in the airlift bioreactor using the nitrifier consortium entrapped in polyvinyl alcohol(PVA) for removing low concentration total ammonia nitrogen(TAN). At the superficial air velocity of 0.83 cm/sec, TAN removal rate and removal efficiency was 316.6±7.2 g/m(3) · day and 92.8±2.2% respectively. Removal rate was continuously increased with decreasing hydraulic residence time(HRT) from 0.5 hr to 0.05 hr, whereas removal efficiency decreased with decreasing HRT. The optimum temperature for nitrification was 30 ℃ at which removal efficiency was 95.5±1.5%. Nitrification was effectively performed at low temperature, 10 ℃. In the pH range from 7 to 9 in the bioreactor, removal rate and removal efficiency was 310±10 g/m(3) · day and 94±3% respectively.
[References]
  1. Campos JL, Garrido-Fernandez JM, Mendez R, Lema JM, Biore. Technol., 68, 141, 1999
  2. Stuckey DC, Barber WP, Water Res., 31, 2423, 2000
  3. Strotmann UJ, Windecker G, Chemosphere, 35, 2939, 1997
  4. Green M, Ruskol Y, Lahav O, Tarre S, Water Res., 35, 284, 2001
  5. Ng WJ, Kho K, Ong DL, Sim TS, Ho JM, Aquacult. Eng., 139, 55, 1996
  6. Tanaka K, Nakao M, Mori N, Emori H, Sumino T, Nakamura Y, Water Sci. Technol., 29, 241, 1994
  7. Matsumura M, Yamamoto T, Wang PC, Water Res., 31, 1027, 1997
  8. Rostron WM, Stuckey DC, Young AA, Water Res., 35, 1169, 2001
  9. Wogelsang C, Husby A, Ostgaard K, Water Res., 31, 1659, 1997
  10. Ariga O, Yamakawa T, Fujimatsu H, Sano Y, J. Ferment. Bioeng., 68, 293, 1989
  11. Hashimoto S, Furukawa K, Biotechnol. Bioeng., 30, 52, 1987
  12. Suh KH, Kim YH, Cho JK, Kim BJ, Sae JK, Park EJ, Kim SK, J. Korean Environ. Sci. Soc., 8, 479, 1999
  13. Chisti MY, "Airlift Bioreactors, Elsevier Applied Science," London and New York, 1, 1989
  14. APHA, AWWA and WEF: Standard Methods for the Examination of Water and Wastewater, 20th ed., EPS Group, 4-106, 1998
  15. Kim CW, J. Environ. Hi-Tech., 5, 2, 1998
  16. Garrido JM, Vanbenthum WA, Vanloosdrecht MC, Heijnen JJ, Biotechnol. Bioeng., 53(2), 168, 1997
  17. Timmons MB, Greiner AD, Aquacult. Eng., 18, 189, 1998
  18. Suh KH, Cho JK, Kim BJ, Theor. Appl. Chem. Eng., 5, 1077, 1999
  19. Liu Y, Capdevelle B, Environ. Technol., 15, 1001, 1994
  20. Pano A, Middlebrooks EJ, J. WPCF, 55, 956, 1983
  21. Nishio T, Yoshikura T, Mishima H, Inouye Z, Itoh H, J. Ferment. Bioeng., 86(4), 351, 1998
  22. Randall CW, Buth D, J. WPCF, 56, 1045, 1984
  23. Sharma B, Ahlert RC, Water Res., 11, 897, 1977
  24. Lahav O, Artzi E, Tarre S, Green M, Water Res., 35, 397, 2001