Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.6, 687-693, 2002
플라즈마 처리된 폴리이써설폰 막의 CO2/N2 혼합가스의 투과거동에 대한 연구
Study on CO2/N2 Mixture Gas Permeation Behavior through Polyethersulfone Membrane Treated by Plasma
폴리이써설폰 막(polyethersulfone membrane, PES)을 Ar, NH3 플라즈마로 표면 처리하고, 처리 전후의 변화를 관찰하였다. Ar 플라즈마로 처리하였을 때 O/C의 비율이 증가하며 친수성기의 도입이 확인되었고 NH3 플라즈마로 처리하였을 때 아민, 아미노기가 도입되었다. 또한 폴리이써설폰 막의 흡습성이 유지될 경우, 플라즈마 처리에 의해 표면에 형성된 극성 작용기들과 CO2와의 내부반응이 증가하였다. 이로 인해 N2에 비하여 CO2의 용해 선택성이 증가하였고 투과도와 선택도가 동시에 향상되는 효과를 나타내었다. 플라즈마 처리된 폴리이써설폰 막에서 CO2의 투과도와 γ(actual separation factor)에 대한 최적조건은 Ar 플라즈마 처리의 경우 10 W-2 min에서 각각 13.19×10(-10) cm(3)(STP)cm/cm(2)ㆍsㆍcmHg와 20.12이며, NH3 플라즈마 처리의 경우 50 W-2 min에서 15.40×10(-10) cm(3)(STP)cm(2)ㆍsㆍcmHg와 20.06를 얻었다.
The surface of polyethersulfone(PES) membrane treated by Ar, NH3 plasma, and the effects were observed before and after the treatment. The membrane treated by Ar plasma was increased the O/C ratio and measured the hydrophilic group, and the one by NH3 plasma was attached the amine group and the amino group. In addition, with the wettability of polyethersulfone membrane CO2 and the polar functional groups of surface interacted increasingly. Thus by comparable increase of the soluble selectivity CO2 to N2 both the permeability and the selectivity of CO2 was improved. The optimum condition for the CO2 permeation and actual separation factor of the plasma treated membrane was as follows; the measurement of Ar-10 W-2 min plasma treatment was 13.19×10(-10) cm(3)(STP)cm/cm(2) · s · cmHg and 20.12, and the measurement of NH3-50 W-2 min plasma treatment was 15.40×10(-10)cm(3)(STP)cm/cm(2) · s · cmHg and 20.06.
[References]
  1. The Membrane Society of Korea, "Gas Separation," Membrane Separation, Free Academy, 291,309,310, 1996
  2. Yoshikawa M, Fujimoto K, Kimugawa H, Kitao T, Ogata N, Chem. Lett., 243, 1994
  3. Inagaki N, Tasaka S, Kawai H, J. Polym. Sci. A: Polym. Chem., 33(12), 2001, 1995
  4. Nihlstrand A, Hjertberg T, Johansson K, Polymer, 38(7), 1557, 1997
  5. Grill A, Cold Plasma in Materials Fabrication, The Institute of Electrical and Electronics Engineers, Press. Inc., New York, 2-5, 1994
  6. Borisov S, Khotimsky VS, Rebrov AI, Rykov SV, Slovetsky DI, Pashunin YM, J. Membr. Sci., 125(2), 319, 1997
  7. Kawagami M, Yamashita Y, Iwamoto M, Kagawa S, J. Membr. Sci., 55, 131, 1991
  8. Noh SH, Rew DS, Park HJ, Bae SY, Membr. J., 11, 38, 2001
  9. Yasuda H, J. Macromol. Sci.-Chem., A10, 383, 1976