Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.6, 681-686, 2002
건조 공정 중 요소 수지 성형재료의 경화 특성에 대한 물질전달 효과
The Effect of Mass Transfer on the Cure Properties of the Urea Resin Moulding Compounds Under the Drying Process
산업 현장에서 이론적인 건조방법이 실제와는 차이가 많고 또한 배기가스의 재순환이 폐열을 이용하는 목적으로 열원의 절감에는 경제적이지만 이들 파라미터에 따른 요소수지 성형화에 미치는 영향을 연구한바가 없다. 따라서 요소 수지 성형재료의 경화 특성을 건조와 성형 공정 중의 건조온도와 시간, 배기가스 재 순환률 및 성형온도에 따라 실험하여 다음과 같은 결과를 얻었다. 성형재료의 수분함량은 건조 시간과 건조 온도가 증가함에 감소하고, 건조속도는 배기가스 재 순환률이 증가하면 감소한다. 특히 경화유동도는 배기가스의 재 순환량, 건조온도 및 성형온도가 증가하면 감소한다. 또한 건조온도, 건조시간, 배기가스의 재 순환량 및 성형온도에 따라 수분함량과 경화유동도에 대한 상관식을 구하여 재현성있는 최적의 조건을 구명하였다.
In the industrial field, the theory of drying process is different from the practical application, and it is effective to reduce energy by recirculation of the heat of exhausting gas. But the study of this field may not be performed still. The cure properties of the urea resin moulding compounds was investigated according to drying temperature, drying time, recycle rate of exhausting gas and moulding temperature in the process of drying and moulding. We obtained the following results; water content of material decreases with increasing drying time and drying temperature, and the rate of drying also decreases with increasing recycle rate of exhausting gas. Specially, The cure fluidity of the urea resin moulding compounds decreases, with increasing drying temperature, recycle rate of exhausting gas and moulding temperature. And the correlation equations on water content and cure fluidity of the urea resin moulding material were obtained through a regression analysis of experimental data.
[References]
  1. Rager R, Mod. Plast., 49, 67, 1972
  2. Kopf P, Wagner E, J. Polym. Sci. A: Polym. Chem., 11, 939, 1973
  3. Bainbridge R, Sail., 8, 142, 1995
  4. Gordon M, Halliwell A, Wilson T, J. Appl. Polym. Sci., 10, 1153, 1966
  5. Aldersley JW, Gorden M, Halliwell A, Wilson T, Polymer, 9, 345, 1966
  6. Shriver DS, Bara EJ, U.S. Patent, 3,458,464, 1969
  7. Anderson IH, Cawely M, Steedman W, Br. Polym. J., 1, 24, 1967
  8. Shenai Va, Manjeshwar JM, J. Appl. Polym. Sci., 18, 1407, 1974
  9. Blank WJ, J. Coat. Technol., 51, 61, 1979
  10. Agranoff J, Modern Plastics Encyclopedia 1983-1984, McGraw-Hill, Inc., 1983
  11. Sato K, Naito T, Polym. J., 5, 144, 1973
  12. Sato K, Abe Y, J. Polym. Sci. A: Polym. Chem., 13, 263, 1975
  13. Koral JM, Petschel M, U.S. Patent, 3,661,819, 1972
  14. Calbo LJ, Koral JN, U.S. Patent, 3,803,095, 1974
  15. Calbox WJ, Hensley WL, J. Paint Technol., 46, 46, 1974
  16. Rybicky J, Kamanis SM, J. Appl. Polym. Sci., 24, 1523, 1979
  17. Zunker DW, Proceedings of the TAPPI Papermakers Conference, Atlanta, Ga., 1982 and Portland, Ore., Tappi, New York, 1983