Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.6, 664-668, 2002
전해 구리 도금된 활성탄소섬유에 의한 NO의 촉매 환원반응 메커니즘 연구
NO Adsorption and Catalytic Reduction Mechanism of Electrolytically Copper-plated Activated Carbon Fibers
본 연구에서는 전해 도금되어진 활성탄소섬유(activated carbon fibers; ACFs)가 NO 환원거동에 미치는 영향에 대하여 고찰해보았다. 전해도금 시간이 증가함에 따라 탄소표면의 구리의 양은 점차 증가하였으나, 활성탄소섬유의 흡착 특성인 잘 발달된 비표면적 등의 기공구조는 약간씩 감소하는 경향을 보였다. 본 실험 결과, ACFs 및 ACFs/Cu 촉매 표면에서 500 ℃로 NO를 반응시켰을 때 NO가 N2 및 O2로 환원되는 것을 확인하였다. 특히, ACFs/Cu 촉매를 사용한 반응에서는 촉매반응 중 발생하는 산소를 촉매표면에서 잡아주는 역할을 하는 것으로 관찰되었다. 이는 NO환원에 있어서 ACFs와 ACFs/Cu 촉매 사이에 다른 기작이 있다는 것을 보여주는 것으로 생각되어진다.
In this work, the catalytic reduction mechanisms of NO over ACFs/copper prepared by electrolytic copper plating has been studied. It was found that copper content on carbon surfaces increased with increasing the plating time. However, a slightly gradual decrease of adsorption properties, such as, BET specific surface area, was observed in increasing the plating times within the range of well-developed micropore structures. As experimental results, nitric oxide was converted into the nitrogen and oxygen on ACFs and ACFs/copper catalyst surfaces at 500 ℃. Especially, the surfaces of ACFs/copper catalyst were found to scavenge the oxygen released by catalytic reduction of NO, which could be explained by the presence of another nitric oxide reduction mechanism between ACFs and ACFs/copper catalysts.
[References]
  1. Calvert S, Englund HM, "Handbook of Air Pollution Technology," John Wiley & Sons, New York, 1984
  2. Noll KE, Gounaris V, Hou WS, "Adsorption Technology for Air Water Pollution Control," Lewis, Michigan, 1992
  3. Park BJ, Park SJ, Ryu SK, J. Colloid Interface Sci., 217(1), 142, 1999
  4. Moon SH, Jeon SG, Shin DH, Kim KH, Oh CS, HWAHAK KONGHAK, 40(2), 133, 2002
  5. Bansal RC, Donnet JB, Stoeckli F, "Active Carbon," Marcel Dekker, New York, 1998
  6. Park SJ, "Interfacial Forces and Fields: Theory and Applications," Marcel Dekker, New York, 1999
  7. Lowell S, Shields JE, "Power Surface Area and Porosity," Chapman & Hall, London, 1993
  8. Park SJ, Donnet JB, J. Colloid Interface Sci., 200(1), 46, 1998
  9. Park SJ, Jang YS, J. Colloid Interface Sci., 249, 458, 2002
  10. Li CY, Wan YZ, Wang J, Wang YL, Jiang XQ, Han LM, Carbon, 36, 61, 1998
  11. Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91, 2001
  12. Zhu ZH, Radovic LR, Lu GQ, Carbon, 38, 451, 2000
  13. Zhu ZP, Liu ZY, Liu SJ, Niu HX, Appl. Catal. B: Environ., 30(3-4), 267, 2001
  14. Hu YH, Ruckenstein E, J. Catal., 172(1), 110, 1997
  15. Ruckenstein E, Hu YH, Ind. Eng. Chem. Res., 36(7), 2533, 1997
  16. Denton P, Giroir-Fendler A, Schuurman Y, Praliaud H, Mirodatos C, Primet M, Appl. Catal. A: Gen., 220(1-2), 141, 2001
  17. Lynch ET, Kershaw JP, "Metal Matrix Composites," CRC, Cleveland, 1972
  18. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309, 1938
  19. Donnet JB, Bansal RC, "Carbon Fibers," 3rd ed., Marcel Dekker, New York, 1998
  20. Chen Z, Mu L, Ignowski J, kelly B, Linjewile TM, Agarwal PK, Fuel, 80, 1259, 2001
  21. Tomita A, Fuel Process. Technol., 71, 53, 2001