Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.5, 624-627, 2002
광화학적 아세트알데히드 분해의 Kinetics
Kinetics for the Photocatalytic Degradation of Acetaldehyde
본 연구에서는 평판에 코팅된 광촉매와 자외선을 가지고 광화학적 방법으로 아세트알데히드를 CO2로 완전히 분해하였다. 이러한 광화학적 아세트알데히드 분해 경향을 알아보기 위하여 Langmuir-Hinshelwood(L-H) 속도식을 활용하였다. 코팅 면적별로 초기농도를 변해가며 수행한 실험에서 얻은 상수값을 활용하여 시용 조건에서의 반응을 모델링 할 수 있었으며, 동일 초기농도와 빛의 세기에서는 면적이 클수록 반응속도가 증가하였고, 동일면적에서는 빛의 세기가 증가함에 따라 반응속도가 1차에서 0.5차로 변함을 확인하였다. 이 두 결과에 의하여 면적이 작아도 조사한 빛의 세기에 따라 큰 면적의 경우보다 속도상수가 큰 영역의 존재가능성이 제시되었으며, 실험적으로 이러한 결과를 얻을 수 있는 반응면적과 빛의 세기 영역이 확인되었다. 광화학 반응에서는 빛의 세기 및 코팅면적이 반응속도에 가장 핵심적인 영향인자이며, 두 인자의 적절한 조화는 시너지효과를 유발할 수 있음을 결론지었다.
In this study, the photocatalytic degradation of acetaldehyde into CO2 with coated photocatalyst on the flat substrate was conducted. To obtain the detailed characteristics of the reaction the Lanmuir-Hinshelwood kinetics was applied. Modelling of the reaction was successfully achieved with the aid of constants(kL-H, K) extrapolated from the experiments. Reaction rates increased with increased coated area under the same initial concentrations and light intensities. The order of rate, however, changed first to zero with increased light intensity and the same coated area. Those two results brought an issue that at certain light intensity a less-coated area may result in a higher rate, which was finally identified experimentally in this study. The light intensity and the coated area are the most critical factors in photocatalysis, the optimal combination of which can show the synergy.
[References]
  1. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  2. Turchi CS, Ollis DF, J. Catal., 122, 178, 1990
  3. Joo H, Jeon M, Lee T, J. Korean Soc. Environ. Eng., 21, 1231, 1999
  4. Yoon JK, Yoon WS, Joo HK, Jeon MS, Lee TK, HWAHAK KONGHAK, 38(2), 288, 2000
  5. Bolton JR, Cater SR, Helz GR, Zepp RG, Crosby DG, Aquatic and Surface Photochemistry, Lewis Publishers, Boca Raton 467, 1994
  6. Ollis DF, Al-Ekabi H, Photocatalyzed Purification of Water and Air, Elsevier, Amsterdam, 1993
  7. Serpone N, Pelizzetti E, Photocatalysis (Fundamental and Applications), John Wiley & Sons, New York, 1989
  8. Dibble LA, Raupp GB, J. Mol. Catal., 77, 297, 1992
  9. Bolton JR, Ultraviolet Applications Handbook, Bolton Photosciences Inc., 22-23
  10. Fox MA, Dulay MT, Chem. Rev., 93, 341, 1993
  11. Ollis DF, Environ. Sci. Technol., 19, 480, 1985
  12. Serpone N, J. Photochem. Photobiol. A-Chem., 104, 1, 1997
  13. Mehrvar M, Anderson WA, Moo-Young M, Reilly PM, Chem. Eng. Sci., 55(21), 4885, 2000
  14. Kosanic M, J. Photochem. Photobiol. A-Chem., 119, 119, 1998
  15. Obuchi E, Sakamoto T, Nakano K, Shiraishi F, Chem. Eng. Sci., 54(10), 1525, 1999
  16. Yiming X, Langford CH, J. Photochem. Photobiol. A-Chem., 133, 67, 2000
  17. Hoffman AJ, Mills G, Hoffman MR, J. Phys. Chem., 96, 5546, 1992
  18. Ilisz I, Laszlo Z, Dombi A, Appl. Catal. A: Gen., 180(1-2), 25, 1999
  19. Inel Y, Okte AN, J. Photochem. Photobiol. A-Chem., 96, 175, 1996
  20. Choi W, Hong SJ, Chang YS, Cho YM, Environ. Sci. Technol., 34, 4810, 2000
  21. Terzian R, Serpone N, Minero C, Pelizzetti E, J. Catal., 128, 352, 1991
  22. Sabate J, Anderson MA, Kikkawa H, J. Catal., 127, 127, 1991
  23. Yiming X, Langford CH, J. Photochem. Photobiol. A-Chem., 133, 67, 2000
  24. Okte AN, Resat MS, Yuksel I, J. Photochem. Photobiol. A-Chem., 134, 59, 2000
  25. Lepore GP, Pant BC, Langford CH, Can. J. Chem., 71, 2051, 1993
  26. Aquado MA, Anderson MA, Hill CG, J. Mol. Catal., 89, 165, 1994