Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.5, 550-557, 2002
막 개질 반응기와 층상 PSA로 구성된 복합공정의 모사
Process Simulation for Hybrid System Consisting of Membrane Steam Reformers and a Layered PSA
본 연구에서는 고순도의 수소를 생산하기 위한 막 반응기-PSA 복합구조를 갖는 공정을 제안하고 이에 대한 이론적인 연구를 수행하였다. 제안된 복합공정은 막 반응기로 구성된 반응부분과 층상 PSA로 구성된 분리부분으로 이루어져 있으며, 이에 대한 상세 수학적 모델과 공정모사를 수행하였다. 반응부분은 2개의 막 반응기로 구성되어 있으며 한 개의 반응기로 구성된 경우에 비해 메탄 전환율이 약 16% 증가됨을 알 수 있었다. 막 반응기를 통하여 나온 혼합가스 중 수소의 몰 분율은 약 0.31 정도이나 이를 상업적으로 유용하게 하기 위하여 흡착성능이 다른 두 흡착제를 연속으로 충전시킨 층상 PSA를 사용하여 수소를 분리하였으며 순도는 99.999%로 나타났다. 층상 PSA 공정에서 수소를 제외한 다른 유용한 가스들을 다시 막 반응기에 주입하는 순환구조를 구성함으로써 공정의 효율을 높였다. 메탄가스의 재순환으로 인한 수소의 회수율은 약 9% 가량 증가되었다. 따라서 제시된 막 반응기-PSA 복합공정이 효율적인 수소의 생산에 기여함을 알 수 있었다.
In this study we propose hybrid system consisting of membrane steam reactors and a layered PSA process, and carry out theoretical analysis by means of modelling and process simulation. The proposed system is comprised of the reaction part including membrane reactors and separation part including a layer PSA column. Detailed mathematical description for each process is developed and dynamic simulation for the combined process is performed. The reaction part contains two membrane reactors and the methane conversion of the system is improved more than 1% comparing with the conventional one membrane reactor system. The hydrogen mole fraction at the exit of the membrane reactor is approximately 0.31 but in order to use it for a commercial purpose, layered PSA process, which includes two adsorbents, is employed. The purity of hydrogen gas at the exit of the layered PSA is 99.999%. By recycling all useful gases from the layered PSA except hydrogen to the membrane reactor as a feedstock, the process efficiency is highly improved. In particular, the hydrogen recovery is improved as much as 9% comparing with the non-recycle system. It is, therefore, concluded that the proposed hybrid system contributes to the efficient production of high purity hydrogen.
[References]
  1. Armor JN, Appl. Catal. A: Gen., 176(2), 159, 1999
  2. Aasberg-Petersen K, Nielsen CS, Jorgensen SL, Catal. Today, 46(2-3), 193, 1998
  3. Adris AM, Elnashaie SSEH, Hughes R, Can. J. Chem. Eng., 69, 1061, 1991
  4. Shu J, Grandjean BP, Kaliaguine S, Appl. Catal. A: Gen., 119(2), 305, 1994
  5. Xu J, Froment GF, AIChE J., 35, 88, 1989
  6. Xu J, Froment GF, AIChE J., 35, 97, 1989
  7. Barbieri G, Dimaio FP, Ind. Eng. Chem. Res., 36(6), 2121, 1997
  8. Madia GS, Barbieri G, Drioli E, Can. J. Chem. Eng., 77(4), 698, 1999
  9. Kim JH, Choi BS, Yi J, J. Chem. Eng. Jpn., 32(6), 760, 1999
  10. Jang DG, Shin HS, Kim JN, Cho SH, Suh SS, HWAHAK KONGHAK, 37(6), 882, 1999
  11. Choi YJ, Oh M, Chung ST, Proceedings PSE ASIA 2000, 457, 2000
  12. Oh M, Ph.D. Thesis, University of London, 1995
  13. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases & Liquids," McGraw-Hill, New York, 1988
  14. Park JH, Kim JN, Cho SH, AIChE J., 46(4), 790, 2000