Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.3, 336-344, 1995
인산 연료전지 전극의 미세구조와 산소환원반응 특성
Microstructure and Oxygen Reduction Reaction in Phosphoric Acid Fuel Cell Electrodes
인산 연료전지용 전극을 Teflon 함량 25-65wt%, 소성온도 320-390℃로 변화시켜 제조하여 촉매층의 기공분포와 기공내부에서의 인산 전해질 및 가스분포량을 계산하고 이 전극에서의 산소환원반응을 조사하였다. 인산흡수도는 테프론 함량이 증가할수록, 소성온도가 높아질수록 전극의 소수성 증가에 의하여 그 값이 낮아졌으며 agglomerate 기공도와 족매층의 기공도는 전극제조조건에 관계없이 일정한 값을 보였다. 전해액은 촉매층 내 micropore의 일부에 존재하게 되며 전극의 소수성이 증가할수록 보다 작은 기공까지만 채웠다. 105% 인산으로 150-210℃의 온도범위에서 산소환원반응 실험결과 150-190℃에서는 전달계수 α가 2/3의 값을 가지며 Tafel 기울기가 온도에 비례하였으나 210℃에서는 α=1/2의 값을 보였다. 평형전위에서의 산소환원반응이 활성화 에너지는 약 68 KJ/mol로 계산되었다.
Electrodes were made with different preparative conditions (320-390℃ sintering temperature and 25-65wt% PTFE content) and the pore size distribution and electrolyte uptake for each electrode were measured. From these data we calculated porosities, electrolyte and gas volume fractions of the electrocatalyst layer and agglomerate regions. Percentage acid occupation decreased by the increase of PTFE content and sintering temperature due to an increase of hydrophobicity. Porosities of electrocatalyst and agglomerate remained constant regardless of preparative conditions. The electrolyte occupied part of micropore, perferentially smaller radius of pore with increased hydrophobicity. Oxygen reduction reaction in 105% phosphoric acid resulted in α(transfer coefficient)=2/3 and a proportionality between Tafel slope and temperature in the range of 150-190℃ and α=1/2 at 210℃. The activation energy at equilibrium potential was calculated as 68KJ/mol in the temperature range of 150-190℃.
[References]
  1. Watanabe M, Tomikawa M, Motoo S, J. Electroanal. Chem., 195, 81, 1985
  2. Mori T, Imahashi J, Kamo T, Tamura K, hishinuma Y, J. Electrochem. Soc., 133, 896, 1986
  3. Giordano N, Passalacqua E, Recupero V, Vivaidi M, Taylor EJ, Wilemski G, Electrochim. Acta, 35, 1411, 1990
  4. Giordano N, Passalacqua E, Alderucci V, Staiti P, Pino L, Mirzaian H, Taylor EJ, Willemski G, Electrochim. Acta, 36, 1049, 1991
  5. Kunz HR, Gruver GA, J. Electrochem. Soc., 122, 1279, 1975
  6. Watanabe M, Makita K, Usami H, Motoo S, J. Electroanal. Chem., 197, 195, 1986
  7. Damjanovic A, Genshaw MA, Electrochim. Acta, 15, 1281, 1970
  8. Iczkowski RP, Gutlip MB, J. Electrochem. Soc., 127, 1433, 1980
  9. Striebel KA, McLarnon FR, Cairns EJ, Oxygen Reduction in Fuel Cell Electrolytes, LBL24340 Berkeley, California, 1987
  10. Adamson AW, "Physical Chemistry of Surfaces," 4th ed., John Wiley & Sons, New York, 1982
  11. Sugumaran N, Shukla AK, J. Power Sources, 39, 249, 1992
  12. Scharifker BR, Zelenay P, Bockris JOM, J. Electrochem. Soc., 134, 2714, 1987
  13. Maoka T, Electrochim. Acta, 33, 371, 1988
  14. Clouser SJ, Huang JC, Yeager E, J. Appl. Electrochem., 23, 597, 1993
  15. Sepa D, Vojnovic M, Damjanovic A, Electrochim. Acta, 26, 781, 1987