Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.3, 318-327, 1995
Tetrabutylammonium Hydrogen Sulfate에서 O2기체에 의한 Diphenylmethane의 산화반응
Oxidation of Diphenylmethane by O2 Gas with Tetrabutylammonium Hydrogen Sulfate
상이동촉매 tetrabutylammonium hydrogen sulfate의 벤젠 용액과 NaOH수용액의 불균일계에서 상이동촉매의 평형실험과 25℃, 대기압에서 준 회분식 교반조 흡수기를 사용하여 O2에 의한 diphenylmethane의 산화반응실험을 행하였다. 평형실험으로부터 QX와 QOH의 평형상수 K1과K2 및 QOH와 diphenylmethane의 평형상수 K3를 측정하였으며, 이들 값은 각각 2.01X10-6mol/l, 2.5X104L/mol, 3.0mol/l이었다. O2의 초기흡수속도로부터 얻어진 반응촉진계수값을 사용하여 산화반응의 반응속도정수 k, 1.01 l/mol s을 구하였다. 기-액-액 불균일계에서 상이동촉매에 의한 반응메카니즘을 경막설에 의한 화학반응이 수반한 물질전단기구로서 해석하였다.
The oxidation of diphenylmethane by oxygen was carried out in a liquid-liquid heterogeneous system with benzene solution of tetrabutylammonium hydrogen sulfate as a phase transfer catalyst and aqueous solution of sodium hydroxide as a base using a stirred absorber at 25℃ and an atmospheric pressure. The equilibrium constants, K1, K2, K3, between the intermediates of catalyst, base, and reactant were obtained from equilibrium experiment, and their values, 2.01×10-6mol/l 2.5×104 l/mol and 3.0 mol/l, respectively. The reaction rate constants of oxidation of diphenylmethane with oxygen was obtained from the experimental enhancement factor of initial rate of oxygen absorption, and its value 1.01 l/mol s. The reaction mechanism by the phase transfer catalyst at the interface of the gas-liquid-liquid heterogeneous system was analyzed by mass transfer mechanism with chemical reaction using the film theory.
[References]
  1. Weber WP, Gokel GW, "Phase Transfer Catalysis in Organic Synthesis," Springer-Verlag, New York, 1977
  2. Starks CM, Liotta C, "Phase Transfer Catalysis-Principle and Techniques," Academic Press, New York, 1978
  3. Dehmlow EV, Dehmlow SS, "Phase Transfer Catalysis," Verlag Chemie, 2nd Ed., Weinheim, 1983
  4. Starks CM, "Phase-Transfer Catalysis, New Chemistry, Catalysis, and Applications," J. Am. Chem. Soc., Washington, D.C., 1987
  5. Bartok W, Rosenfeld DD, Schriesheim A, J. Org. Chem., 28, 410, 1963
  6. Feldman D, Rabinovitz M, J. Org. Chem., 53, 3779, 1988
  7. Alneri E, Bottaccio G, Carletti V, Tetrahedron Lett., 2117, 1977
  8. Yamashita J, Ishikawa S, Hashimoto H, Bull. Chem. Soc. Jpn., 53, 736, 1980
  9. Garcia BJ, Gokel GW, Tudor PW, "Phase Transfer Catalysis," Academic Press, New York, p. 313, 1978
  10. Alper H, Januszkiewicz K, Smith DJH, Tetrahedron Lett., 26, 2263, 1985
  11. Zahalka HA, Januszkiewicz K, Alper H, J. Mol. Catal. A-Chem., 35, 249, 1986
  12. Wasserman HH, Pickett JE, J. Am. Chem. Soc., 104, 4695, 1982
  13. Januszkiewicz K, Alper H, Tetrahedron Lett., 24, 5163, 1983
  14. Clark JH, Goodall DM, Tetrahedron Lett., 24, 1097, 1983
  15. Rozwadoska MV, Brozda D, Can. J. Chem., 58, 1239, 1980
  16. Park SW, Suh DS, HWAHAK KONGHAK, 32(5), 700, 1994
  17. Park SW, Moon JB, Park DW, Shin JH, HWAHAK KONGHAK, 31(1), 107, 1993
  18. Scott GV, Anal. Chem., 40, 768, 1968
  19. VanKrevelen DW, Hoftizer PT, Chem. Trans. Chem., 67, 563, 1948
  20. Danckwerts PV, "Gas-Liquid Reactions," McGraw-Hill Book Co., New York, p. 17, 1970