Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.2, 192-203, 1995
모세관 응축에 따른 크로마토그래픽 응답곡선의 거동해석
Analysis of Chromatographic Response Curve Behavior with Capillary Condensation
다공성입자로 된 충전층의 입자 내에서 모세관 응축이 일어난 경우에 대한 수식모델을 소개하였다. 탈착시의 실험자료를 이용한 기공크기분포 계산결과로부터 모세관 응축에 관련된 매개변수의 추정방법을 제시하였다. 모세관 응축률에 따른 크로마토그래픽 응답곡선의 거동을 예측하였다. 모세관 응축률이 커질수록 응답이 빨라지며 정규화된 응답곡선의 최대치도 약 30% 범위내에서 증가하였다. 관련된 매개변수의 민감도를 조사한 결과 Pe수의 민감도가 가장 큰 것으로 나타났으며 분배계수의 경우에는 그 값이 약 1보다 크면 민감해지는 것으로 밝혀진다. 기상 확산계수의 민감도는 매우 작았으며 신빙성있는 유효확산계수의 실험적 결정을 위한 최적 실험조건을 살펴보았다.
A mathematical model has been introduced for the bed packed with porous particles in which capillary condensation has occurred. Estimation methods for the parameters related to capillary condensation were suggested using the results for the computation of the chromatographic response curve were predicted with the degree of capillary condensation. As the degree of capillary condensation increases, response becomes faster and the peak value of the normalized response curve increases within about 30%, Sensitivity test revealed that Peclet number is the most sensitive parameter and partition coefficient becomes sensitive when it is approximately greater than 1. Sensitivity of the gas phase effective diffusivity was found to be very small and the optimum experimental condition for the determination of the reliable effective diffusivity was examined.
[References]
  1. Schneider P, Smith JM, AIChE J., 14, 762, 1968
  2. Hashimoto N, Smith JM, Ind. Eng. Chem. Fundam., 13, 115, 1974
  3. Sarma PN, Haynes HW, Adv. Chem., 133, 205, 1974
  4. Shah DB, Ruthven DM, AIChE J., 23, 804, 1977
  5. Chiang AS, Dixon AG, Ma YH, Chem. Eng. Sci., 39, 1461, 1984
  6. Satterfield CN, Ozel F, AIChE J., 19, 1259, 1973
  7. Morita S, Smith JM, Ind. Eng. Chem. Fundam., 17, 113, 1978
  8. Hu R, Ho TC, Chem. Eng. Sci., 42, 1239, 1987
  9. Yentekakis JV, Vayenas CG, Chem. Eng. Sci., 42, 1323, 1987
  10. Tan CS, Chem. Eng. Sci., 43, 1281, 1988
  11. Sedricks W, Kenny CN, Chem. Eng. Sci., 28, 559, 1973
  12. Hanika J, Sporka K, Ruzicka V, Hrstka J, Chem. Eng. J., 12, 193, 1976
  13. Kim DH, Kim YG, J. Chem. Eng. Jpn., 14, 311, 1981
  14. Watson PC, Harold MP, AIChE J., 39, 989, 1993
  15. Watson PC, Harold MP, AIChE J., 40(1), 97, 1994
  16. Kim DH, Kim YG, J. Chem. Eng. Jpn., 14, 318, 1981
  17. Bhatia SK, AIChE J., 35, 1337, 1989
  18. Jaguste HL, Bhatia SK, AIChE J., 37, 650, 1991
  19. Harold MP, Watson PC, Chem. Eng. Sci., 48, 981, 1993
  20. Gregg SJ, Sing KSW, "Adsorption, Surface Area and Porosity," Academic Press, New York, NY, Chapter 3, 1967
  21. Dang NDP, Gibilaro LG, Chem. Eng. J., 8, 157, 1974
  22. Halsey GD, J. Chem. Phys., 16, 931, 1948
  23. Reid RC, Prausnitz JM, Sherwood TK, "The Properties of Gases and Liquids," 3rd ed., McGraw-Hill, New York, NY, p. 359, 1977
  24. Reid RC, Prausnitz JM, Sherwood TK, Reid RC, Prausnitz JM, Sherwood TK"The Properties of Gases and Liquids," 3rd ed., McGraw-Hill, New York, NY, p. 450, 1977
  25. Reid RC, Prausnitz JM, Sherwood TK, Reid RC, Prausnitz JM, Sherwood TK"The Properties of Gases and Liquids," 3rd ed., McGraw-Hill, New York, NY, p. 58, 1977
  26. Wakao N, Smith JM, Chem. Eng. Sci., 17, 825, 1962
  27. Reid RC, Prausnitz JM, Sherwood TK, "The Properties of Gases and Liquids," 3rd ed., McGraw-Hill, New York, NY, Chapter 11, 1977
  28. Wakao N, Funazkri T, Chem. Eng. Sci., 33, 1375, 1978
  29. Ruthven DM, "Principles of Adsorption and Adsorption Processes," New York, NY, Chapter 8, 1984