Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.2, 183-191, 1995
초미립 TiO2 입자 제조용 튜브형 가열로 반응기의 모델연구
A study on Modeling of Tube Furnace Reactor for Manufacture of Ultrafine TiO2 Powders
튜브형 가열로 반응기에 의한 TiO2 초미세 분말 제조공정의 수치모사 결과를 제시하였다. 반응기 내의 모델식으로는 연속식, 에너지식, 물질수지식, 에어로졸의 0차, 1차, 2차모멘트식을 고려하였고, 에어로졸의 동력학식에서는 TiCl4의 반응속도, TiO2 핵화속도, TiO2 입자의 충돌, 확산과 열영동 현상을 포함하였다. 가열온도가 낮을수록, 초기 TiCl2 농도가 높을수록 또는 전체 기체유량의 속도가 빠를수록 생성된 TiO2 입자의 농도가 높게 나타났고, 반면에 반응온도, TiCl4 초기농도가 높을수록 또는 전체 기체유량의 유속이 느릴수록 TiO2 입자의 직경은 크게 나타났다.
The results of numerical model for a tube furnace reactor were proposed to manufacture ultrafine TiO2 powders. The model equations such as continuity, energy balance and mass balance equations, and the 0th, 1st, and 2nd moment equations of aerosols were considered. The phenomena such as TiCl4 reaction rate, TiO2 nucleation rate and the coagulation, diffusion and thermophoresis of TiO2 powders were included in the aerosol dynamic equations. It is found that the TiO2 particle concentration becomes higher, as the furnace temperature decreases and also as the inlet TiCl4 concentration and the total gas flow rate increase. On the other hand, the TiO2 particle size increases, as the furnace temperature and the inlet TiCl4 concentration increase and also as total gas flow rate decreases.
[References]
  1. OkuyamaK, Ohshima K, Tsuto K, KONA, 9, 79, 1991
  2. Kim KS, HWAHAK KONGHAK, 29(4), 417, 1991
  3. Son HY, Park KY, Lee KI, Yang HS, Yoo HS, Chem. Ind. Technol., 7(3), 336, 1989
  4. Pratsinis SE, Kim KS, J. Aerosol Sci., 20, 101, 1989
  5. Kim KS, Pratsinis SE, AIChE J., 34, 912, 1988
  6. Akhtar MK, Xiong Y, Pratsinis SE, AIChE J., 37, 1561, 1991
  7. Friedlander SK, "Smoke, Dust and Haze," Wiley, New York, 1977
  8. Seinfeld JH, "Atmospheric Chemistry and Physics of Air Pollution," Wiley, New York, 1986
  9. Friedlander SK, Aerosol Sci. Technol., 1, 3, 1982
  10. Brock JR, "Simulation of Aerosol Dynamics in Theory of Disperse Multiflow," Mayer, R.E. ed., Academic Press, New York, 1983
  11. Fuchs NA, "The Mechanics of Aerosol," Pergamon Press, New York, 1964
  12. Hinds WC, "Aerosol Technology," Wiley, New York, 1982
  13. Lee KW, J. Colloid Interface Sci., 92, 315, 1983
  14. Lee KW, Chen H, Aerosol Sci. Technol., 3, 53, 1984
  15. Gosman AD, Laubder BE, Reece GJ, "Computer-Aided Engineering Heat Transfer and Fluid Flow," Wiley, New York, 1985
  16. Anderson DA, Tannerhill JC, Pletcher RH, "Computational Fluid Mechanics and Heat Transfer," McGraw-Hill, New York, 1984
  17. Ferzinger JH, "Numerical Methods for Engineering Applications," Wiley, New York, 1981