Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.2, 177-182, 1995
내부 순환식 기포탑에서의 유체 혼합 특성
The Fluid Mixing Characteristics of Internal Loop Bubble Column
본 연구에서는 습식배가스탈황 공정이나 이산화탄소 제거 공정과 같이 유해가스의 화학적 처리과정에서 발생할 수 있는 침전물이 존재하는 고-액 이상류에서의 액상물질 혼합효율을 고찰하기 위하여 내부 순환식기포탑 내에 슬러리 순환류를 유도하고 체류시간분포곡선을 측정하여 유체혼합특성을 고찰하였다. 그 결과 기체유속과 고체입자의 농도가 증가할수록, 그리고 고체입자의 크기에 대해서는 주로 낮은 범위의 기체유속에서 입경이 클수록 기포의 합체현상이 촉진되어 유체혼합시간이 감소하여 혼합효율이 증가하였다. 이러한 경향을 난류등방성 이론과 Bodenstein수를 함수로 하는 식으로 해석한 결과 혼합 특성을 잘 설명할 수 있었다.
To study the characteristics of mixing of liquid in gas-liquid flow with solid particles which can be applied in the wet FGD process and carbon dioxide wet removal process, Residence Time Distribution Curves obtained in the circulating slurry flow were analyzed. Mixing time of liquid was reduced with the increase of superficial gas velocity and concentration of solid particles due to coalescence of bubbles, and it had the same tendency with the size of particles at low gas flow rate. Such tendencies could be well explained by the equation from Kolmogoroff’s isotropic turbulence theory with Bodenstein numbers.
[References]
  1. Shah YT, "Gas-Liquid-Solid Reactor Design," McGraw-Hill, New York, NY, 1979
  2. Kim SD, Kim CH, J. Chem. Eng. Jpn., 16, 172, 1983
  3. Hirata A, Hosaka Y, Umezawa H, World Congress III of Chem. Eng., 3, Tokyo, 556, 1986
  4. Park CJ, Oh KJ, Doh DS, HWAHAK KONGHAK, 28(5), 493, 1990
  5. Verlaan P, Tramper J, Chem. Eng. Sci., 5(44), 1139, 1989
  6. Blenke H, Adv. Biochem. Eng., 13, 121, 1979
  7. Murakami Y, J. Chem. Eng. Jpn., 15, 121, 1982
  8. Park CJ, Doh DS, HWAHAK KONGHAK, 27(4), 459, 1989
  9. Brauner N, Barnea D, Chem. Eng. Sci., 41(1), 159, 1986
  10. Smith DN, Ruther JA, Chem. Eng. Sci., 40(5), 741, 1985
  11. Kim SD, Kim JO, Particulate Sci. Tech., 5, 309, 1987
  12. Fukuma M, Muroyama K, Yasunishi A, J. Chem. Eng. Jpn., 20(1), 28, 1987