Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.2, 147-156, 1995
Molybdenum Nitride 촉매상에서 Dibenzothiophene의 수첨탈황반응에 관한 연구
Hydrodesulfurization of Dibenzothiophene over Molybdenum Nitride Catalysts
본 연구에서는 topotactic reaction을 통하여 제조한 Mo2N 및 Mo2N/Υ-Al2O3 촉매의 특성분석실험을 행하였고, 이 촉매를 사용하여 고정층 연속흐름 반응기에서 n-decane 에 0.5mol% 함유된 dibenzothiophene의 수첨탈황 반응실험을 행하였다. 촉매제조시 승온속도를 느리게 하였을 때 결정성 및 비표면적이 증가하는 경향을 보았다. 또한 충전량이 적을수록 비표면적이 증가하였다. 질화물 촉매는 반응초기에 안정화된 후 일정한 탈황활성을 보였으며, 실험후에도 비표면적이 거의 변하지 않았다. 촉매의 산성도 및 탈황활성은 Mo2N<MoO3/Υ-Al2O3<Mo2-N/Υ-Al2O3의 순서로 증가하였다. Cyclohexylbenzene 이 biphenyl의 수소화반응에 의하여 생성되지 않고 병렬반응에 의해 각각 생성되는 것으로 유추할 수 있다.
Mo2N and Mo2N/ -Al2O3 catalysts were prepared by topotactic reaction method. The catalysts characterization and hydrodesulfurization of n-decane containing 0.5mol% dibenzothiophene was studied in a fixed bed continuous flow reactor. The XRD and BET studies showed that the extent of the crystallinity and the surface area of the prepared Mo2N catalysts increased when the temperature ramping rate was lowered and the packing weight was reduced. After stabilized in the incipient stage of the reaction the nitride catalysts showed constant hydrodesulfurization activity and the surface area showed very little change. The acidity and the hydrodesulfurization activity increased in the order of Mo2N<MoO3/ -Al2O3<Mo2N/ -Al2O3. It was found that cyclohexylbenzene was not generated from the hydrogentation of biphenyl, but both cyclohexylbenezene and biphenyl were produced through parallel reaction.
[References]
  1. Prins R, DeBeer HJ, Somorjai GA, Catal. Rev.-Sci. Eng., 31(1-2), 5, 1989
  2. Kawaguchi Y, DallaLana IG, Otto FD, Can. J. Chem., 56, 65, 1978
  3. Kim KL, Choi KS, Int. Chem. Eng., 27(2), 340, 1987
  4. Lee JS, Boudart M, Appl. Catal., 19, 207, 1985
  5. Ranhotra GS, Haddix GW, Bell AT, Reimer JA, J. Catal., 108, 25, 1987
  6. Nagai M, Miyao T, Tsuboi T, Kusagaya T, "Proceedings of the 10th International Congress on Catalysis," Elsevier, Budapest, 1993
  7. Muller JM, Gault FG, Bull. Soc. Chim. Fr., 2, 416, 1970
  8. Levy R, Boudart M, Science, 181, 547, 1973
  9. Volpe L, Boudart M, J. Phys. Chem., 90, 4878, 1986
  10. Oyama ST, Schlatter JC, Metcalf JE, Lamberg JM, Ind. Eng. Chem. Res., 27, 1639, 1988
  11. Oyama ST, Schlatter JC, Metcalf JE, Lamberg JM, Ind. Eng. Chem. Res., 27, 1648, 1988
  12. Markel EJ, VanZee JW, J. Catal., 126, 650, 1990
  13. 이재성, 촉매, 3(1), 13, 1987
  14. Heine V, Phys. Rev., 153, 673, 1967
  15. Volpe L, Boudart M, J. Solid State Chem., 59, 332, 1985
  16. Volpe L, Boudart M, Catal. Rev.-Sci. Eng., 27(4), 516, 1985
  17. Bursill LA, Proc. R. Soc. London Ser. A, 311, 267, 1969
  18. Kihlborg L, Adv. Chem. Ser., 39, 37, 1981
  19. Nagai NK, Sapre AV, Broderick DH, Gates BC, J. Catal., 57, 509, 1979
  20. Hoog H, Rec. Trav. Chim. Pays Bas., 69, 1289, 1950
  21. Landa S, Mrnkova A, Collect. Czech. Chem. Commun., 31, 2202, 1966
  22. Urimoto H, Sakikawa N, Sekiyu Gakkashi, 15, 926, 1972
  23. Lipsch JM, Schuit GCA, J. Catal., 15, 179, 1969
  24. Rollman LD, J. Catal., 46, 243, 1977
  25. Park HK, Lee JK, Ko ES, Kim KL, Kim DS, Appl. Catal., to be submitted