Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.1, 130-137, 1995
Li/MnO2 전지(CR15400) 양극 활물질의 물리.화학적 성질과 전지의 성능
The Effect of the Physico-chemical Properties of MnO2 on the Performances of Li/MnO2 Cell(CR15400)-I. Low Temperature Performances
Li/MnO2 전지(CR15400) 설계의 최적화를 위한 과정으로 양극 활물질과 전해액에 대하여 시험하였다. 리튬전지용 이산화망간은 제조 방법에 따라 EDM 와 CDM로 대별되고 있기 때문에 EMD
와 CMD 중에서 각각 한가지의 시료를 선택하여 시험한 결과 EMD는 실온에서 용량이 우수하였으며, CMD는 저온 고율 방전 조건에서 탁월한 성능을 보였다. 이와 같은 전지 성능의 차이를 이산화망간의 물리.화학적 성질과 관련시켜 설명하였으며, 저온 고율 방전 특성이 우수하면서도 용량을 만족시키는 전지를 제조하기 위하여 EDM 와 CDM 를 혼합한 양극활물질을 사용한 결과 원하는 성능을 얻을 수 있었다. 전지의 저온 특성 향상의 방법으로 전해액의 리튬염 농도를 변화시켜 보았으며 성능 향상을 확인할 수 있었다. 본 실험에서 제조한 양극을 사용하여 조립한 CR15400 전지는 전자동 카메라의 전원으로 사용할 수 있는 성능을 가지고 있음을 확인하였다.
In the process optimization of CR15400 Li/MnO2 cell the effects of cathode active material and electrolyte have been investigated. A sample each of typical EMD(Electrolytic Manganese Dioxide) and CMD(Chemical Manganese Dioxide) were chosen to be tested. It was found that cells with EMD was superior in the capacity at room temperature, while the one with CMD gave better performance at high rate or low temperature discharge. These results were explained in terms of physicochemical properties of manganese dioxide. Mixtures of EMD and CMD were used in a successful attempt to obtain good rate capability and low temperature characteristics without losing capacity. For improvement of low temperature performance, the concentration of Li salt in the electrolyte was changed with good result. The CR15400 cells made using the improved cathode prepared in this work met the performance requirement for the power source of all automatic cameras.
[References]
  1. Voinov M, Electrochim. Acta, 26, 1373, 1981
  2. Ohzuku T, Tari I, Hirai T, Electrochim. Acta, 26, 1423, 1981
  3. Ilchev N, Banov B, J. Power Sources, 35, 175, 1991
  4. Ilchev N, J. Power Sources, 27, 261, 1989
  5. Downarowicz J, Kwasnik J, Purol H, Krugiolka U, Szczesniak B, Beltowska-Brzezinska M, Dutkiewicz E, Proc. of Symp. on "Electrode Materials and Processes for Energy Conversion and Storage," Vol. 87-12, p. 421, The Electrochem. Soc., Inc., Pennington, NJ, 1987
  6. Yunchang D, Guanguang X, Jianguo C, J. Power Sources, 34, 189, 1991
  7. Ikeda H, Furukawa N, Proc. of Symp. on "Primary and Secondary Ambient Temperature Lithium Batteries," Vol. 88-6, p. 8, The Electrochem. Soc., Inc., Pennington, NJ, 1988
  8. "Handbook of Manganese Dioxides Battery Grade," p. 177, Glover, D., Schumm, B. and Kozawa, A., Editors, The International Battery Material Association, U.S.A., 1989
  9. Ohzuku T, Tari I, Hirai T, Electrochim. Acta, 27, 1049, 1982
  10. Yoshimori T, Kato M, Nippashi K, Murayama J, "Proceedings of the Manganese Dioxide Symposium," vol. 2, Tokyo, Schumm, B., Jr., Joseph, H.M. and Kozawa, A., Editors, p. 369, I.C. Sample Office, Cleveland, 1981
  11. Davis S, Dolle A, Moreau E, Internal Literature from Sedema Div. de Sedacem. S.A., B.P.9-B-7333 Tertre, Belgium, "Graphite as a Pycnometric Fluid forMeasuring the Density of Porous Powders,", 1988
  12. Ikeda H, Saito T, Tamura H, "Proceedings of the Manganese Dioxide Symposium," Vol. 1, Cleveland, Kozawa, A., and Brodd, R.J., editors, p. 384, I.C. Sample Office, Cleveland, 1975
  13. Kim YM, Bang BK, Min HS, Kang HY, HWAHAK KONGHAK, 28(6), 720, 1990
  14. Anderson TN, Moody RG, JEC Battery Newsletter, Glover, D., Schumm, B. Jr. Kozawa, A., Editors, No. 1, p. 68, ITE-JEC Press Inc., Brunswick, OH, 1994