Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.4, 507-515, 2002
전산유체역학을 이용한 분무건조계산
Calculation of Spray Drying Using Computational Fluid Dynamics
전산유체 계산 프로그램 중 하나인 CFX4를 이용하여 직경 140 cm, 높이 170 cm의 회전원반 분무건조기에서 우유를 대상으로 하여 분무실 내 유체흐름 분포, 액적의 거동, 건조 현상 등을 예측해 보았다. 분무실 내의 유체는 아래쪽이 좁아지는 구조로 인하여 중심에서 내려와서 벽 쪽으로 올라가는 커다란 재 순환 영역을 형성하였다. 기체상 내에 액적이 분무됨으로써 유체의 흐름에 상당한 영향을 주는 것을 알 수 있었다. 액적이 재 순환 영역으로 들어가지 않을 만큼 가벼운 경우는 중심에서 크게 벗어나지 않고 아래로 떨어졌고 조금 더 무거운 것은 재 순환 영역을 따라 움직였다. 이 보다 더 질량이 클 경우 유체 흐름에 큰 영향을 받지 않고 아래쪽으로 이동하였다. 선회를 주기 위해 공기분산기의 베인 각도를 0 °, 30 °, 45 ° 로 변화시킴에 따라 유체의 재 순환 영역이 위쪽으로 이동하였다. 베인 각도가 커지면 선회 강도가 증가하여 액적이 상부에서 원을 크게 그리며 아래로 떨어지기 때문에 체류시간이 길어지는 효과가 있으나, 재 순환 영역이 상부로 이동함에 따라 건조되지 못한 액적이 벽에 부딪힐 위험성이 증가하였다.
Using CFX4, a computational fluid dynamics program, the gas flow pattern, the droplet trajectory and the extent of drying were calculated for spray drying of a milk with a rotary disk in a spray chamber of 140 cm in diameter and 170 cm in height. Due to the cone of the chamber, whose cross sectional area became smaller toward the outlet, a recirculation flow was formed in the chamber pointing downward in the center and upward near the wall. The gas flow pattern was significantly affected by the droplets ejected from the rotating disk. The smaller droplets descended downward not far from the axis, medium sized droplets were swept into the recirculation flow, and even larger ones were little affected by the recirculation flow, travelling downward near the wall. The center of recirculation flow moved upward and toward the wall as the vane angle of the air disperser was increased from 0 to 30 and 45 °. An increase of the vane angle increased the swirling intensity and consequently the droplets flew in a larger circle resulting in an increase of the residence time. On the other hand, the droplets became more likely to hit the wall with the vane angle increase.
[References]
  1. Dickinson DR, Marshall WR, AIChE J., 14, 541, 1968
  2. Parti M, Palancz B, Chem. Eng. Sci., 29, 355, 1974
  3. Chow LC, Chung JN, Int. J. Heat Mass Transf., 26, 373, 1983
  4. Crowe CT, Sharma MP, Stock DE, J. Fluid Eng., 99, 325, 1997
  5. Launder BE, Spalding DB, Comput. Methods Appl. Mechanics Eng., 3, 269, 1974
  6. Sano Y, Drying Tech., 11, 697, 1993
  7. Kim HJ, Master Thesis, KAIST, Daejeon, 1991
  8. Oakley DE, Bahu RE, Computational Modeling of Spray Dryers, European Symposium on Computer Aided Process Engineering-2, 493, 1992
  9. Livesley DM, Oakley DE, Yeoman ML, "Development and Validationof a Computational Model for Spray-Gas Mixing in Spray Dryers," AEA Report, AEA-InTec-0759, 1991
  10. Ministry of Commerce, Industry and Energy: "The Study of the Derelopment of a High Efficiency Dise Type Spray Dryer," 1997-E-ID01-49, 2000
  11. Katta S, Gauvin WH, AIChE J., 21, 143, 1975
  12. CFX4 Solver Manual, AEA Technology, 1997
  13. Master K, "Spray Drying Handbook," 4th ed., George Godwin, London, 1985
  14. Beer JM, Chigier NA, "Combustion Aerodynamics," Halsted Press Division, Wiley, New York, 1972
  15. Hayashi H, "Studies on Spray Drying Mechanism of Milk Powders," Rep Res Lab Snow Brand Products, Japan, 66, 1962