Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.4, 436-444, 2002
열역학적으로 가능한 반응 클러스터 합성을 위한 사전적 탐색 알고리즘의 물 분해에 대한 적용
Application of a Lexicographic Search Algorithm for Synthesis of Thermodynamically Feasible Reaction Clusters to Water Decomposition
어떤 화학반응에서 원하는 생성물의 수율이 너무 낮아 실용성이 없을 때 반응 클러스터의 합성이 요구된다. 이때 원하는 총괄반응에 대하여 공업적으로 이용 가능한 클러스터들은 많이 존재할 수 있으며 이들 중 최적 클러스터를 찾는 것이 우리의 목표이다. 본 논문에서는 주어진 화학물질 집합에 대하여 사용자가 지정한 조건들을 만족하는 모든 잠재적 클러스터들을 찾아내는 사전적 탐색 알고리즘을 제안한다. 사례 연구로서 이 알고리즘은 물을 구성원소들로 분해하는 반응 클러스터들을 합성하는데 적용된다. 이 반응을 성공적으로 실행시키면 우리는 지속적인 청정 에너지를 확보하게 된다. 본 연구 결과 비교적 낮은 온도에서 실행 가능한 다양한 잠재적 클러스터들을 합성하였다. 이 클러스터들은 부반응, 속도론 및 다른 고려사항들에 대하여 보다 엄밀하게 분석될 수 있다. 이 방법론은 어떠한 총괄반응에 대해서도 적용 가능하다. 따라서 이는 경제적이며 안전하고 환경 친화적인 화학공정 설계에 기여할 것으로 기대된다.
Synthesis of a reaction cluster is required when the yield of a desired product from a single chemical reaction is too low for practical application. For a desired overall reaction, there may be a large number of industrially operable clusters, and it is our goal to find the optimal one among these. In this paper, a lexicographic search algorithm is proposed, which identifies all potential clusters that satisfy user specified conditions for a given set of chemical species. As a case study, this algorithm is applied to synthesis of reaction clusters for the decomposition of water to its constitutive elements. Successful execution of this reaction will provide us with sustainable clean energy. As a result of this study, various potential clusters have been synthesized at relatively low operation temperatures. These clusters can be more thoroughly investigated for potential side reactions, kinetics, and other concerns. This methodology can be applied to any desired overall reaction. Therefore, it is expected to contribute to design of economic, safe, and environmentally benign chemical processes.
[References]
  1. May D, Rudd DF, Chem. Eng. Sci., 31, 59, 1976
  2. Rotstein E, Resasco D, Stephanopoulos G, Chem. Eng. Sci., 737, 1337, 1982
  3. Seressiotis A, Bailey J, Biotechnol. Bioeng., 31, 587, 1988
  4. Happel J, Sellers P, Otard M, Ind. Eng. Chem. Res., 29, 1057, 1990
  5. Mavrovouniotis ML, Stephanopoulos G, Ind. Eng. Chem. Res., 31, 1625, 1992
  6. Holiastos K, Manousiouthakis V, AIChE J., 44(1), 164, 1998
  7. Choi SH, Palmer T, Manousiouthakis V, Energy and the Environment-Topical Conference Proceedings of AIChE 2000 Annual Meeting, 76, 2000
  8. Kim HG, Choi SH, Manousiouthakis V, Theor. Appl. Chem. Eng., 7, 3159, 2001
  9. Sandler S, "Chemical and Engineering Thermodynamics," 2nd Ed., John Wiley & Sons, 1989
  10. Smith JM, van Ness HC, "Introduction to Chemical Engineering Thermodynamics," 5th ed., McGraw-Hill, 1997
  11. Ohta T, Abe I, Int. J. Hydrog. Energy, 10, 275, 1985
  12. Perry RH, Green DW, Maloney JO, "Perry's Chemical Engineers," Handbook, 7th ed., McGraw-Hill, 1997