Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.33, No.1, 19-28, 1995
술폰산 이온교환 수지촉매에 의한 MTBE 합성반응의 속도론적 연구
A Kinetics Study on MTBE Synthesis Reaction with Ion Exchange Resin Catalysts
그물 구조형 수지촉매 Amberlyst-15 상에서 이소부틸렌[iso-butylene, (CH3)2C=CH2]에 메탄올(methanol, CH3OH)을 기상부가시켜 MTBE[Methyl Tertiary Butyl Ether, (CH3)3COMe]를 합성하는 실험을 행하였다. 반응속도식을 도출하기 위한 속도 data는 고정층 상압유통계 장치의 미분형 반응기에서 얻었다. Langmuir-Hin-shelwood-hougen-waston(LHHW)모델링에 대한 속도론적 자료를 비선형 회귀분석으로 구한 결과 MTBE 합성반응 속도는 다음과 같이 표현되었다. r=kKIKM(PIPM-Pε/K)/(1+KIPI+KMPM+KεPε)3 ro=kKIKMPIOPMO/(1+KIPIO+KMPMO)3 반응기구는 한 활성점에 흡착된 메탄올과 다른 활성점에 흡착된 이소부틸렌이 흡착된 에테르 분자를 생성하기 위해서 한 개의 활성점이 첨가되는 표면반응이 속도결정 단계인 LHHW model을 따르는 것으로 이며 MTBE 합성반응의 활성화 에너지 8.941Kcal/mole로 계산되었다.
The vapor phase addition of methanol to iso-butylene was studied in a differential flow reactor with macroreticular resin catalysts-Amberlyst 15. Reaction rate datas were analyzed by nonlinear regression method. The best fitting Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model is expressed as follows: r=kKIKM(PIPM-Pε/K)/(1+KIPI+KMPM+KεPε)3 ro=kKIKMPIOPMO/(1+KIPIO+KMPMO)3 The rate determining step of the mechanism seems to be the surface reaction between the molecularly adsorbed methanol on one active center and the isobutylene adsorbed on the other one. The reaction requires an adjacent empty active center. The activation energy of MTBE synthesis was estimated as 8.941kcal/mole.
[References]
  1. Hough JE, Technol. Oil Gas J., 41(Nov.), 21, 1988
  2. Subramanianm C, Bhatia S, J. Chem. Eng., 65, 613, 1987
  3. 석유화학 Chemical Journal, 5, 9, 1991
  4. Clementi A, Oriani G, Ancillotti F, Pecci G, Hydrocarb. Process., 59(12), 109, 1979
  5. Convers A, Jiguin B, Torck B, Hydrocarb. Process., 60(3), 95, 1981
  6. Fattore V, MassiMauri M, Oriani G, Poret G, Hydrocarb. Process., 60(8), 101, 1981
  7. Pecci G, Floris T, Hydrocarb. Process., 56, 98, 1977
  8. Tejero J, Cunill F, Izquierdo JF, Ind. Eng. Chem. Res., 28, 1269, 1989
  9. Tejero J, Cunill F, Izquierdo JF, Ind. Eng. Chem. Res., 27, 338, 1988
  10. Cunill F, Tejero J, Izquierdo JF, Appl. Catal. A: Gen., 34, 341, 1987
  11. Rehfinger A, Hoffmann U, Chem. Eng. Sci., 45(6), 1605, 1990
  12. Gicquel A, Torck B, J. Catal., 83, 9, 1983
  13. "Amberlyst 15," Rohm and Haas Co., Philadelphia, U.S.A., 1990
  14. Fisher SA, Kunin R, Anal. Chem., 27, 1191, 1955
  15. Setinek K, Beranek L, J. Catal., 17, 306, 1970
  16. Kabel RL, Johanson LN, AIChE J., 8(5), 621, 1962
  17. Lee ST, Lee WY, Seoul National University Engng. Rep., 13, 7, 1981
  18. Gates BC, Johanson LN, AIChE J., 17(4), 981, 1971
  19. Thornton R, Gates BC, J. Catal., 34, 275, 1974
  20. Beranek L, Catal. Rev.-Sci. Eng., 16(1), 1, 1977
  21. Carberry JJ, Chemical and Catalytic Reaction Engineering McGraw-Hill, New York, Chapter 8, 1976
  22. Vannice MA, Hyun SH, Kalpaki B, Liauh WC, J. Catal., 56, 358, 1979