Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.32, No.6, 819-829, 1994
점성 및 점탄성 액체를 이용한 기포탑에서의 기체 체류량에 관한 연구
Gas Holdup in the Bubble Columns with Viscous and Viscoelastic Liquids
액체의 점성 및 점탄성이 기포탑에서의 기체 체류량에 미치는 영향을 연구하였다. 넓은 범위의 액체 물성을 고려하기 위하여 뉴튼 유동특성을 나타내는 수크로오스 수용액, 강한 가소성을 나타내면서 약한 점탄성을 지니는 xanthan 수용액, 강한 점탄성을 나타내는 polyacrylamide(PAA) 수용액, 그리고 중간 정도의 점탄성을 나타내는 xanthan-PAA 혼합물의 수용액을 액체상으로 각각 사용하였다. 액체의 점도가 증가함에 따라 기체 체류량은 불균일 흐름영역에서는 감소하여 최소치를 보인 후에 슬러그 흐름영역에서는 증가함을 보였다. 강한 점탄성을 나타내는 PAA 수용액에서의 기체 체류량은 약한 점탄성의 xanthan 수용액에서 보다 낮은 값을 보였다.
The effects of liquid viscosity and viscoelasticity on gas holdups were studied in a bubble column. For the sake of covering a wide range of the liquid properties, the newtonian sucrose, strongly pseudoplastic and weakly viscoelastic xanthan, strongly viscoelastic polyacrylamide(PAA) and moderately viscoelastic xanthan-PAA mixture aqueous solutions were used as the liquid phase. As increasing the liquid viscosity, the gas holdups decreased in the heterogeneous flow regime. On the other hand, the gas holdups in the slug flow regime increased with the effective viscosity. The gas holdups in the strongly viscoelastic solutions of PAA exhibited lower values than those in the weakly viscoelastic xanthan solutions.
[References]
  1. Deckwer WD, "Reaktionstechnik in Blasensaeulen," Salle+Sauerlaender, Frankfurt am Main, 1985
  2. Deckwer WD, "Bubble Column Reactors," John Wiley & Sons, New York, 1992
  3. Suh Is, Schumpe A, Deckwer WD, Biotechnol. Bioeng., 39, 85, 1992
  4. Haque MW, Nigam KDP, Josh JB, Chem. Eng. Sci., 41, 2321, 1986
  5. Nishikawa M, Kato H, Hashimoto K, Ind. Eng. Chem. Process Des. Dev., 16, 133, 1977
  6. Godbole SP, Honath MF, Shah YT, Chem. Eng. Commun., 16, 119, 1982
  7. Schumpe A, Deckwer WD, Ind. Eng. Chem. Process Des. Dev., 21, 706, 1982
  8. Kawase Y, Moo-Young M, Ind. Eng. Chem. Res., 26, 933, 1987
  9. Schumpe A, Deckwer WD, Bioprocess Eng., 2, 79, 1987
  10. Godbole SP, Schumpe A, Shah YT, Carr NL, AIChE J., 30, 213, 1984
  11. Bach HF, Pilhofer T, Ger. Chem. Eng., 1, 270, 1978
  12. Schumpe A, Singh C, Deckwer WD, Chem. Ing. Tech., 57, 988, 1985
  13. Franz K, Buchholz R, Schuegerl K, Chem. Eng. Commun., 5, 165, 1980
  14. Buchholz H, Buchholz J, Juecke J, Schuegerl K, Chem. Eng. Sci., 33, 1061, 1978
  15. Deckwer WD, Nguyen-tien K, Schumpe A, Serpemen Y, Biotechnol. Bioeng., 24, 461, 1982
  16. Schumpe A, Patwari AN, Chem. Ing. Tech., 57, 847, 1985
  17. Nicklin DJ, Wilkes JO, Davidson JF, Trans. Inst. Chem. Eng., 40, 61, 1962
  18. Akita K, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 12, 76, 1973
  19. Nakanoh M, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 19, 190, 1980
  20. Suh IS, Schumpe A, Deckwer WD, Kulicke WM, Can. J. Chem. Eng., 69, 506, 1991
  21. Heijnen JJ, Van't Riet K, Wolthuis AJ, Biotechnol. Bioeng., 22, 1945, 1980
  22. Michele H, Rheol. Acta, 16, 413, 1977
  23. Weiss RG, Foster NR, Clark KN, Can. J. Chem. Eng., 63, 173, 1985
  24. Philip J, Proctor JM, Niranjan K, Davidson JF, Chem. Eng. Sci., 45, 651, 1990
  25. Bhaga D, Weber ME, Chem. Eng. Sci., 35, 2467, 1980
  26. Narayanan S, Goosens LHJ, Kossen NWF, Chem. Eng. Sci., 29, 2071, 1974
  27. Crabtree JR, Bridgewater J, Chem. Eng. Sci., 26, 839, 1971
  28. Astarita G, Apuzzo G, AIChE J., 11, 815, 1965