Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.32, No.4, 622-626, 1994
Amyloglucosidase에 의한 Fructo-oligosaccharides 생산의 반응메카니즘
Reaction Mechanism for the Production of Fructooligosaccharides by Amyloglucosidase
Amyloglucosidase에 의한 fructooligosaccharides 생산에서의 효소반응 메카니즘을 수학적 모델을 통해 규명 하였다. Amyloglucosidase는 기존의 fructooligosaccharides 생산효소인 fructosyltransferase와 거의 동일한 메카니즘에 의한 fructooligosaccharides를 생산하는 것으로 밝혀졌다. 효소 동력학적 인자 중 Km 및 KI 값들은 fructosyltransferase에 비해 큰 값을, Vmax 는 낮은 값을 나타내었다. 제안된 모델을 두 기질농도에 대한 실험치와 비교해 본 결과 대체로 서로 잘 일치하였다.
A mathematical model for the production of fructooligosaccharides by amyloglucosidase was proposed and compared with experimental results. The reaction mechanism of amyloglucosidase in fructooligosaccharides production was very similar to that of fructosyltransferase except that fructose was accumulated at a high level. The kinetic parameters such as Michaelis constants(Km) and inhibition constant(KI) were higher, whereas maximum reaction velocities(Vmax) were low compared with those of fructosyltransferase. Although data points were scattered for profiles of sucrose and 1-kestose to some extent, good agreement was generally found between the proposed model and experimental results.
[References]
  1. Reilly PJ, Applied Biochemistry and Bioengineering (Wingard, L.B. et al., eds), Vol. 2, p. 185, Academic Press, Inc., New York, 1979
  2. Kennedy JF, Cabral JMS, Kalogerakis B, Enzyme Microb. Technol., 7, 22, 1985
  3. Adachi S, Udea Y, Hashimoto K, Biotechnol. Bioeng., 26, 121, 1984
  4. Shiraishi F, Kawakami K, Kusunoki K, Biotechnol. Bioeng., 27, 498, 1985
  5. Beschkov V, Marc A, Engasser JM, Biotechnol. Bioeng., 26, 22, 1984
  6. Kuriki T, Tsuda M, Imanaka T, J. Ferment. Bioeng., 73(3), 198, 1992
  7. Kuruki T, Yanase M, Takata H, Takesada Y, Imanaka T, Okada S, Appl. Environ. Microbiol., 59(4), 953, 1993
  8. Hayashi S, Itho K, Nonoguchi M, Takasaki Y, Imada K, J. Ferment. Bioeng., 72(1), 68, 1991
  9. Hidaka H, Eida T, Saitoh Y, Nippon Nogeikagaku Kaishi, 61, 915, 1987
  10. Hidaka H, Hirayama M, Sumi N, Agric. Biol. Chem., 52(5), 1181, 1988
  11. McKellar RC, Modler HW, Appl. Microbiol. Biotechnol., 31, 537, 1989
  12. Hidaka H, Eida T, Takizawa T, Tokunaga T, Tashiro Y, Bifidobacteria Microflora, 5, 37, 1986
  13. Yun JW, Jung KH, Oh JW, Lee JH, Appl. Biochem. Biotechnol., 24-25, 299, 1990
  14. Yun JW, Jung KH, Jeon YJ, Lee JH, J. Microbiol. Biotechnol., 2(2), 98, 1992
  15. Yun JH, Jeon YJ, Lee MG, Song SK, Korean J. Biotechnol. Bioeng., 8(3), 266, 1993
  16. Jung KH, Yun JW, Kang KR, Lim JY, Lee JH, Enzyme Microb. Technol., 11, 491, 1989
  17. Yun JW, Noh JS, Lee MG, Song SK, HWAHAK KONGHAK, 31(6), 846, 1993
  18. Yun JW, Song SK, Biotechnol. Lett., 15(6), 573, 1993
  19. Yun JW, Lee MG, Song SK, J. Ferment. Bioeng., 77(2), 159, 1994
  20. Yun JW, Song SK, Han JH, Cho YJ, Lee JH, Korean J. Biotechnol. Bioeng., 9(1), 35, 1994
  21. Yun JW, Noh JS, Song SJ, Song SK, Korean J. Biotechnol. Bioeng., in press, 1994
  22. Yun JW, Choi YC, Lee MG, Song SK, Korean J. Biotechnol. Bioeng., 9(1), 40, 1994