Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.3, 388-393, 2002
H-beta Zeolite를 이용한 5-ortho-tolylpentene에서 1,5-Dimethyltetralin의 제조
Preparation of 1,5-Dimethyltetralin from 5-ortho-tolylpentene Using H-beta Zeolite
PEN(polyethylene naphthalate) 수지의 전구물질인 2,6-DMN(2,6-dimethylnaphthalene) 제조를 위한 1,5-DMT(1,5-dimethyltetralin) 합성반응, 즉 5-OTP(5-ortho-tolyl-pentene)의 고리화 반응을 H-beta zeolite 촉매를 사용하여 수행하였다. 기존 특허상의 H-USY에 비교해서 향상된 전화율과 선택도를 얻을 수 있었다. 특히 공정에서 불순물로 작용하는 부반응 생성물인 기타 DMT 이성체, DMN 이성체 및 여러 고분자 물질들의 생성이 억제되었고, 140 ℃ 이하의 온도에서 100%의 1,5-DMT 선택도를 얻을 수 있었다. 140 ℃보다 높은 고온에서 장시간 반응시에는 1,5-DMT의 이성화 반응이 진행되었으나 1,5-DMT와 동일한 triad에 속하는 1,6-DMT와 2,6-DMT와 같은 유용한 물질 쪽으로 반응이 진행되었다. H-beta zeolite 촉매의 넓은 외부 표면적과 적정한 산점 세기가 우수한 반응성과 선택도를 보이는 원인으로 판단된다.
To make 2,6-DMN(2,6-dimethylnaphthalene) used as a precursor of PEN(polyethylene naphthalate), the catalytic cyclization reaction of 5-OTP(5-ortho-tolyl-pentene) to 1,5-DMT(1,5-dimethyltetralin) was carried out by using H-beta zeolite. Compared with H-USY mentioned in the several patents, higher activity and selectivity to 1,5-DMT were obtained using H-beta: the side reaction products such as DMTs, DMNs and other polymers, known as impurities in many processes were suppressed. H-beta shows 100% selectivity to 1,5-DMT at lower temperatures below 140 ℃. At temperatures above 140 ℃, isomerization of 1,5-DMT occured on H-beta, but the products were 1,6-DMT and 2.6-DMT which were belonging to the same triad of 1,5-DMT and could be used as reactants to make a final product. The high activity and selectivity of H-beta was considered to be originated from the microcrystallite structure of H-beta with large and irregular external surface area, mesopore, and proper acidic strength.
[References]
  1. Harper JJ, Kulmann GE, Lamb KD, McMahon RF, Sanchez PA, U.S. Patent, 5,183,933, 1993
  2. Iwane H, Sugawara T, Kujira K, Suzuki N, Sakata T, U.S. Patent, 5,442,103, 1995
  3. Lilwitz LD, Karachewski AM, U.S. Patent, 5,198,594, 1993
  4. Sikkenga DL, Zaenger IC, Williams GS, U.S. Patent, 5,030,781, 1991
  5. Sikkenga DL, Zaenger IC, Williams GS, U.S. Patent, 5,118,892, 1992
  6. Chu SJ, Chen YW, Appl. Catal. A: Gen., 123(1), 51, 1995
  7. Haggin J, Chem. Eng. News, June(20), 23, 1988
  8. Bellussi G, Pazzuconi G, Perego C, Girotti G, Terzoni G, J. Catal., 157(1), 227, 1995
  9. Hoefnagel AJ, van Bekkum H, Appl. Catal. A: Gen., 97, 87, 1993
  10. Rigutto MS, de Vries HJA, Magill SR, Hoefnagel AJ, van Bekkum H, Stud. Surf. Sci. Catal., 78, 661, 1993
  11. Dagade SP, Waghmode SB, Kadam VS, Dongare MK, Appl. Catal. A: Gen., 226(1-2), 49, 2002
  12. Dejong KP, Mesters CM, Peferoen DG, Vanbrugge PT, Degroot C, Chem. Eng. Sci., 51(10), 2053, 1996
  13. Camblor MA, Perez-Pariente J, Zeolites, 11, 202, 1991
  14. Higgins JB, Lapierre RB, Schlenker JL, Rohrman AC, Wood JD, Kerr GT, Rohrbaugh WJ, Zeolites, 8, 446, 1988
  15. Kokotalio GT, Ciric J, Adv. Chem. Ser., 101, 109, 1971
  16. Kil MH, M.S. Dissertation, Kyungpook National Univ., Daegu, Korea, 1998
  17. Sikkenga DL, Zaenger IC, Williams GS, U.S. Patent, 4,962,260, 1990
  18. Sikkenga DL, Lamb JD, Zaenger IC, Williams GS, U.S. Patent, 5,073,670, 1991
  19. Ozawa S, Takagawa M, Dnamasa K, U.S. Patent, 5,396,008, 1995
  20. Sikkenga DL, Zaenger IC, Lamb JD, Williams GS, U.S. Patent, 5,401,892, 1995
  21. Imelik B, Naccache C, Coudurier G, Ben Taarit Y, Vedrine JC, "Catalysis by Acids and Bases," Elsevier, New York, 1985
  22. Harvey G, Binder G, Prins R, Stud. Surf. Sci. Catal., 94, 397, 1995
  23. Jansen JC, Creyghton EJ, Njo SL, Vankoningsveld H, Vanbekkum H, Catal. Today, 38(2), 205, 1997