Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.3, 357-361, 2002
주형을 이용한 티타니아 나노구조체 합성
Template Synthesis of Titania Nanostructures
나노미터 직경을 갖는 침상형 주형(hydroxyapatite)을 이용한 새로운 접근 방법으로 티타니아 나노구조체를 졸-겔법을 근간으로 하여 합성하였다. 본 합성법은 나노전구체(실리카 피복 주형) 제조, 나노전구체 소성 및 주형제거 과정으로 구성되어 있다. 나노전구체에 대한 주사 전자현미경(SEM), 투과 전자현미경(TEM), X-선 회절 분석(XRD) 및 광전자 분광 분석(XPS) 결과를 통해 주형의 표면에 티타니아가 원활히 피복되어 있음을 확인할 수 있었다. Ti 2p3/2 결합에너지에 대한 고분해능 XPS 분석에서 결합 에너지의 화학전이가 일어남이 관찰되었는데, 이는 피복된 TiO2와 주형 사이에 화학적 결합에 기인된 것으로 추정된다. 균일한 티타니아 나노구조체 형성은 물 부가량에 의존함을 보였으며, 나노구조체 직경은 50-400 nm 정도의 크기로 주형의 직경과 동일한 양상을 보였다. 이상의 결과를 통해 본 연구에서 제안한 방법이 나노구조체의 새로운 합성방법으로 적용 가능함을 확인할 수 있었다.
A novel technique for synthesis of titania nanostructures with needle-like template, hydroxyapatite, having particle size of nanometer diameter was investigated in this study. The synthetic routes involve the preparation of nanoprecursor(silica-coated templates), calcination of nanoprecursor and removal of templates. The analysis of nanoprecursor by means of scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) showed that titania particles were successfully deposited onto the surface of templates. Considering the chemical shift of binding energy of Ti 2p3/2 on the titania-coated template, it was inferred that TiO2 in the coating thin-film is combined onto template surface through chemical bond. TEM images of titania nanostructures showed that the formation of uniform titania nanostructures was dependent on the addition amount of water. The diameters of the synthesized nanostructures, mainly in the range of 50-200 nm, correspond with the diameters of the templates. The results confirm that the proposed technique in this study can be utilized as a new method to fabricate the nanostructures.
[References]
  1. Iijima S, Nature, 354, 56, 1991
  2. Satishkumar BC, Govindaraj A, Vogl EM, Basumallick L, Rao NR, J. Mater. Res., 12(3), 604, 1997
  3. Lakshmi BB, Dorhout PK, Martin CR, Chem. Mater., 9, 857, 1997
  4. Schlottig F, Textor M, Georgi U, Roewer G, J. Mater. Sci. Lett., 18(8), 599, 1999
  5. Zhang M, Bando Y, Wada K, Kurashima K, J. Mater. Sci. Lett., 18(23), 1911, 1999
  6. Nakamura H, Matsui Y, J. Am. Chem. Soc., 117(9), 2651, 1995
  7. Morales AM, Lieber CM, Science, 279(5348), 208, 1998
  8. Zhang Y, Suenaga K, Colliex C, Iijima S, Science, 281, 973, 1998
  9. Okazaki M, Yoshida Y, Yamaguchi S, Kaneno M, Elliott JC, Biomaterials, 22, 245910
  10. Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK, Langmuir, 12(13), 3173, 1996
  11. Walters MA, Leung YC, Blumenthal NC, LeGeros RZ, Konsker KA, J. Inorg. Biochem., 39, 193, 1990
  12. Joschek S, Nies B, Krotz R, Gopferich A, Biomaterials, 21, 1645, 2000
  13. Moulder JF, Stickle WF, Sobol PE, Bomben KD, "Handbook of X-Ray Photoelectron Spectroscopy," 2rd ed., Chastain, J. and King. Jr. R.C., Physical Electronics. Inc., Eden Prairie, MN, 1995
  14. Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H, J. Mater. Sci. Med., 8, 867, 1997
  15. Clarke TA, Rizkalla EN, Chem. Phys. Lett., 37, 523, 1976
  16. McCormick RL, Alptekin GO, Catal. Today, 55(3), 269, 2000
  17. Milella E, Cosentino F, Licciulli A, Massaro C, Biomaterials, 22, 1425, 2001