Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.3, 351-356, 2002
코로나 방전 공정에 의한 탈질시의 NOx 전환율 및 입자특성 분석
Analysis on NOx Conversion and Particle Characteristics in NOx Removal by Corona Discharge Process
본 연구에서는 펄스 코로나 방전 공정에 의한 NO 제거 효율 및 입자 크기 분포를 분석하였고, 여러 공정변수의 변화가 미치는 영향을 분석하였다. 인가 전압, 펄스 주파수, 공급 기체 체류시간, 반응기로 공급되는 초기 NO 농도, 초기 NH3 농도, 초기 H2O 농도 등의 공정변수가 NO 제거 및 입자 특성에 미치는 영향을 측정하고 분석하였다. 인가 전압 및 체류시간이 증가함에 따라, 또는 초기 NO 농도가 감소함에 따라 NO 제거 효율은 증가하였다. 방전극의 직경이 두꺼울 때 높은 NO 제거 효율을 얻었다. 초기 NH3와 H2O의 농도 변화는 NO 제거에 큰 영향을 주지 못했다. 초기 NO 농도가 증가할수록, 체류시간이 증가할수록 그리고 인가 전압이 증가할수록 생성된 암모늄염 입자의 농도와 크기는 증가하였다.
In this study, we analyzed the NOx removal efficiency and particle size distribution by the pulsed corona discharge process and investigated the effect of several process variables. The NO removal efficiencies and the particle characteristics were measured and analyzed as the function of initial concentrations of NO, H2O, and NH3 at the inlet, applied voltage, pulse frequency and residence time of gas stream. As the applied voltage and the residence time increased, or as the initial concentration of NO decreased, the NO removal efficiency increased. The higher NO removal efficiencies were obtained with the discharge electrode of larger diameter. The changes of initial NH3 and H2O concentrations did not affect the NO removal efficiency significantly. The particle concentration and size of ammonium nitrate salts increased with the increases of initial NO concentration, residence time and applied voltage.
[References]
  1. Chang JS, J. Aerosol Sci., 20, 1087, 1989
  2. Chang JS, Lawless PA, Yamanoto T, IEEE Trans. Ind. Appl., 19(6), 1152, 1991
  3. Clements JS, Mizuno A, Wright CF, Davis RH, IEEE Trans. Ind. Appl., 25(1), 63, 1989
  4. Atkinson R, Baulch DL, Coa RA, Hampson RF, Kerr JA, Troe J, J. Phys. Chem. Ref. Data, 26, 6, 1997
  5. Dinelli GL, Civitano M, IEEE Trans. Ind. Appl., 26(4), 535, 1990
  6. Tas MA, Vanhardeveld R, Vanveldhuizen EM, Plasma Chem. Plasma Process., 17(4), 371, 1997
  7. Masuda S, Hosokawa S, IEEE Trans. Ind. Appl., 29(4), 781, 1993
  8. Mizuno A, Shimizu K, Chakrabarti A, Dascalescu L, Masulka SF, IEEE Trans. Ind. Appl., 31(5), 957, 1995
  9. Nunez CM, Ramsey GH, Ponder WH, Abbott JH, Hamel L, Air Waste, 43, 242, 1993
  10. Vanveldhuizen EM, Rutgers WR, Bityurin VA, Plasma Chem. Plasma Process., 16(2), 227, 1996
  11. Masuda S, Nakao H, IEEE Trans. Ind. Appl., 26(2), 374, 1990
  12. Ham SW, Park HH, Mok YS, HWAHAK KONGHAK, 37(5), 759, 1999
  13. Mok YS, Ham SW, Chem. Eng. Sci., 53(9), 1667, 1998
  14. Mok YS, Ham SW, Nam IS, IEEE Trans. Plasma Sci., 26(5), 1556, 1998
  15. Choi H, Ham SW, Nam IS, Kim YG, Sim JH, Ha BH, HWAHAK KONGHAK, 34(1), 91, 1996
  16. Moon JD, Lee GT, J. KSEE, 16(2), 149, 1994
  17. Kim DJ, Kim KS, HWAHAK KONGHAK, 38(5), 711, 2000
  18. Kim KS, Kim DJ, Aerosol Sci. Technol., 36(2), 178, 2002
  19. Kim DJ, Choi YR, Kim KS, Plasma Chem. Plasma Process., 21(4), 625, 2001