Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.3, 324-329, 2002
이브프로펜 Enantiomer의 크로마토그래피 흡착 상관관계식
Adsorptive Correlations of Chromatography for Ibuprofen Enantiomers
본 연구에서는 상온에서 분리되어진 각각의 라세미 이브프로펜 대장체들의 흡착 매개변수를 다음 세 가지 방법에 의해서 구하고자 하였다. 등온 흡착식을 구하는 첫 번째 방법으로서 흡착 평형식으로서 Langmuir 식을 가정하였으며 Langmuir 흡착 매개변수를 구하기 위하여 NLSF(nonlinear least squares fitting) 방법을 사용하였다. 두 번째 방법으로는 계산의 오차를 줄이기 위한 방법으로서 기존의 방법과는 다르게 시행오차를 통하여 흡착 매개변수 값을 얻을 수 있었다. 세 번째 방법을 흡착평형식으로서 competitive bi-Langmuir 식을 가정하고 동적 흡착 실험방법인 pulse method에서 tR(retention time)과 dq/dC관계를 사용하였다. 이 세가지 방법을 통하여 흡착식의 매개변수 값을 구할 수 있었다. 크로마토그래피를 이용한 키랄 의약품의 광학분할에서 체류시간은 키랄 고정상 칼럼 내의 물질수지식으로부터 알 수 있듯이 흡착평형, 고정상과 상호작용이 없는 물질의 체류시간(dead time), 칼럼 내의 고정상과 이동상의 부피비(상비) 그리고 칼럼 충진밀도로부터 결정된다. 본 연구에서는 체류시간에 영향을 주는 요인 중에서 칼럼 충진밀도와 상비는 고정하였고 흡착평형과 상비에 영향을 주는 조업조건과 체류시간 사이의 상관관계식을 얻었다. Dead time에 영향을 주는 조업조건으로서 이동상 조성, 이동상 유속과 체류시간사이의 상관관계식을 얻었다. 여기서 얻은 상관관계식들을 이용하여 시간에 따른 조업조건의 변화로부터 체류시간의 변화를 알 수 있었고, 이 결과를 이용하여 시간에 따른 조업조건의 변화가 체류시간에 영향을 주므로 분리도의 변화를 예측할 수 있었다.
In this study, three methods were employed to obtain adsorption parameters for S, R-(±)-Ibuprofen enantiomers. In the first method, Langmuir isotherm was assumed and nonlinear least squares fitting was applied to obtain Langmuir adsorption isotherm parameters. The second method was used to obtain adsorption isotherm parameters by the way which is different from conventional methods to reduce computation error. In the third method, competitive bi-Langmuir equation was assumed. Pulse method which is a dynamic adsorption experimental method was used to derive a relationship between the retention time (tR) and dq/dC. In the optical separation of chiral drug by chromatography, the retention time depends on adsorption equilibrium, dead time, phase ratio, the column packing density. Among chromatography system variables, the column packing density and phase ratio were fixed, but solvent compositions and solvent flow rates were employed as operating parameters in this study. Correlation equations between the retention time and operating conditions were obtained from the experimental results. This correlation equation would allow us to predict retention time change with operating conditions. Also resolution could be predicted.
[References]
  1. Rota R, Morbidelli M, Rombi E, Monaci R, Ferino I, Solinas V, Ind. Eng. Chem. Res., 35(1), 199, 1996
  2. Jana J, John F, J. Chromatogr., 316, 53, 1984
  3. Song T, Suh SS, Choi MH, Kim YD, Lee JK, Park D, HWAHAK KONGHAK, 38(3), 373, 2000
  4. Thomas EB, Raymond PWS, "Chiral Chromatography," Chapter 8, 1998
  5. Hyun MH, "Separation of Optical Isomer by LC," Min-Um Sa, Seoul, Chapter 2, 1996
  6. Guiochon G, Shirazi SG, Katti AM, "Fundamentals of Preparative and Nonlinear Chromatography," Academic Press, Inc., London, Chapter 3, 1994
  7. Ganetsos G, Barker PE, "Preparative and Production Scale Chromatography," Marcel Dekker, New York, Chapter 6, 1992
  8. Subramanian G, "A Practical Approach to Chiral Separations by Liquid Chromatography," VCH Verlagsgesellschaft mbH, New York, 1994
  9. Pryde A, Gilbert MT, "Applications of High Performance Liquid Chromatography," Chapman and Hall, London, 1979
  10. Hamilton RJ, Sewell PA, "Introduction to High Performance Liquid Chromatography," second edition, Chapman and Hall, London, 1982
  11. Krstulovic AM, "Chiral Separation by HPLC," Ellis Horwood Ltd., Paris, 1989
  12. Ratkowksy DA, "Handbook of Nonlinear Regression Models," Marcel Dekker, 1990