Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.32, No.3, 332-340, 1994
ECR 플라즈마 화학증착법을 이용한 박막 증착에 관한 연구
A Study on Thin Films Deposited by ECR Plasma CVD Method; Hydrogenated Amorphous Silicon Films
ECR 플라즈마 화학증착법을 이용하여 a-Si:H막을 제조하고, 막의 특성을 결정짓는 수소의 함량과 조업변수와의 관계를 규명하였다. FTIR로부터 얻은 자료의 분석에 의하면 증착속도가 클수록 SiH4의 유량이 증가할수록 막의 수소함량은 감소한 반면 기판의 온도가 증가함에 따라 수소함량은 오히려 증가하였다. 증착속도는 SiH4의 분압이 증가할수록, 마이크로파의 세기가 클수록 증가하였다. 그러나 ECR이 형성되는 위치, 기판의 온도는 증착속도에 거의 영향을 미치지 못했다. a-Si:H막 표면의 SEM사진 분석에 의하면 마이크로파의 세가와 기판으 온도가 증가할수록 막 표면의 거칠기는 향상되었다. ECR플라즈마 화학증착법을 이용하여 a-Si:H막을 형성시키는 경우 마이크로파의 세기를 크게 하면 증착속도가 증가될 뿐 아니라 수소함량이 감소되며 표면의 거칠기도 향상된다는 것을 알 수 있었다.
Characteristics of the hydrogenated amorphous silicon(a-Si:H) films prepared by the electron cyclotron resonance plasma chemical vapor deposition(ECRP CVD) method at low pressure
(10-3 Torr) were studied. Deposition rate, hydrogen content and surface roughness were investigated under various deposition conditions such as substrate temperature, partial pressure of SiH4 and microwave power. The hydrogen content in the deposited films decreased with the increase of the microwave power and SiH4 partial pressure, but increased with the substrate temperature. The deposition rate depended greatly upon the microwave power and partial pressure of SiH4, but slightly upon substrate temperature. The roughness of the deposited film surface was improved as substrate temperature and microwave power increased.
[References]
  1. Asmussen J, "Handbook of Plasma Processing Technology," ed. by Rossnagel, S.M., Cuomo, J.J. and Westwood, W.D., Noyes Publication, Park Ridge(New Jersey), 285, 1990
  2. Matsuo S, "Handbook of Thin-Film Deposition Processes and Techniques," ed. by Schuegraft, K.K., Noyes Publication, Park Ridge(New Jersey), 147, 1988
  3. Kagawa T, Matsumoto N, Kumada K, Jpn. J. Appl. Phys., 21, 251, 1982
  4. Carlosn DE, Wronski CR, Appl. Phys. Lett., 28, 671, 1976
  5. Snell AJ, Mackenzie KD, Spear WE, Lecomber PG, Appl. Phys., 24, 357, 1981
  6. Knights JC, Jpn. J. Appl. Phys., 18(18), 101, 1978
  7. Tanaka K, Nakagawa K, Matsuda A, Matsumura M, Yamamoto H, Yamasaki S, Okushi H, Iijima S, Jpn. J. Appl. Phys., 20(20), 267, 1981
  8. Shimada H, Mizuno S, Noda M, Jpn. J. Appl. Phys., 25, 775, 1986
  9. Kitagawa M, Mori K, Ishihara S, Ohno M, Hirao T, Toshioka Y, Kohiki S, J. Appl. Phys., 53, 3269, 1983
  10. Kato S, Aoki T, J. Non-Cryst. Solids, 77-78, 813, 1985
  11. Yokota K, Sugahara T, Kinoshita K, Tamura S, Katayama S, J. Electrochem. Soc., 140(2), 525, 1993
  12. Essick JM, Pool FS, Shing YH, J. Vac. Sci. Technol. A, 10(3), 521, 1992
  13. Hirose M, "Plasma Deposited Thin Films," ed. by Mort, J. and Jansen, F., CRC Press, Boca Raton (Florida), 21, 1986
  14. 이전, 이시우, "CVD 핸드북,", 반도출판사, 서울, Chap. 2, 1993
  15. Nishikawa S, Kakinuma H, Watanabe T, Nihei K, Jpn. J. Appl. Phys., 24, 639, 1985
  16. Andosca RG, Varhue WJ, Adams E, J. Appl. Phys., 72(3), 1126, 1992
  17. Chopra KL, "Thin Film Phenomena," McGraw-Hill Pub., New York, Chap. III, 1969
  18. Kobayashi K, Hayama M, Kawamoto S, Miki H, Jpn. J. Appl. Phys., 26(2), 202, 1987
  19. Hayama M, Kobayashi K, Kawamoto S, Miki H, Onishi Y, J. Non-Cryst. Solids, 97-98, 273, 1987
  20. Shanks H, Fang CJ, Lay L, Cardona M, Demond FJ, Kalbitzer S, Phys. Status. Solid. B, 100, 43, 1980
  21. Kitagawa M, Setsune K, Manabe Y, Hirao T, Jpn. J. Appl. Phys., 27(11), 2026, 1988
  22. Hayama M, Murai H, Kobayashi K, J. Appl. Phys., 67(3), 1356, 1990
  23. Kitagawa M, Ishihara SI, Setsune K, Manabe Y, Hirao T, Jpn. J. Appl. Phys., 26(4), L231, 1987
  24. Watanabe T, Azuma K, Nakatani M, Suzuki K, Somobe T, Shimada T, Jpn. J. Appl. Phys., 25(12), 1805, 1986