Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.32, No.2, 213-221, 1994
아크롤레인 선택산화반응에서 Mo-V-O와 SnO2의 상간협동 I. 기계적 혼합물촉매
Phase Cooperation between Mo-V-O and SnO2 in Selective Oxidation of Acrolein I. Mechanical Mixture Catalysts
본 연구는 아크롤레인의 선택산화반응에서 Mo-V-O와 SnO2의 기계적 혼합물촉매의 상승효과에 관한 메카니즘을 규명하기 위한 것이다. 촉매의 물리적 성질 및 구조를 관찰하기 위하여 TG/DTA, BET, XRD, SEM 등을 사용하였고, 암모니아의 승온탈착법으로 산성도를 측정하였다. 촉매의 산화-환원 특성은 승온탈착(TPD), 승온환원(TPR), 승온산화(TPO) 실험으로 조사하였다. 반응실험결과 기계적 혼합물촉매는 각각의 산화물보다 높은 아크롤레인 전화율을 나타내었다. 이와 같은 상승효과는 두 상의 협동에 의한 것으로 추측된다. Mo-V-O에서 SnO2로 전자의 이동이 일어나 SnO2에 산소 빈자리를 생성시키고 이것이 분자 산소를 해리하여 아크릴산 생산의 활성상인 Mo-V-O에 산소를 공급하여 줌으로써 이의 재산화를 촉진시키는 것으로 판단된다.
The present study was aimed to elucidate the mechanism of synergy effect in mechanically nixed catalysts of Mo-V-O and SnO2 for the selective oxidation of acrolein. Physical and structural properties of catalysts were characterized by TG/DTA, BET, XRD and SEM. TPD of ammonia was carried out for the measurement of catalyst acidity. Reduction and oxidation behaviors of catalysts were studied using TPD, TPR and TPO. Reaction test showed that the mixture catalysts had higher conversion of acrolein than either of the each metal oxide. The origin of the synergy is attributed to the cooperation of the two metal oxide, in which electrons flow from Mo-V-O phase to SnO2 at their interface and it creates oxygen vacancies in SnO2. Dissociated oxygen ions formed by the oxygen vacancies of SnO2 move to Mo-V-O, active phase for the formation of acrylic acid, and promotes its reoxidation.
[References]
  1. Hucknall DJ, "Selective Oxidation of Hydrocarbons," Academic Press, New York, p. 23, 1974
  2. Dadyburjor DB, Jewur SS, Ruckenstein E, Catal. Rev.-Sci. Eng., 19(2), 293, 1979
  3. Grasselli RK, Burrington JD, Adv. Catal., 30, 133, 1981
  4. French Patent, DE 2,397,229, 1979
  5. Japan Patent, 86-11, 211, 1986
  6. Black JB, Scott JD, Serwicka EM, Goodenough JB, J. Catal., 106, 16, 1987
  7. Serwicka EM, Black JB, Goodenough JB, J. Catal., 106, 23, 1987
  8. Kim JJ, Lee WH, Rhee HK, Chem. Eng. Commun., 34, 49, 1985
  9. Carson D, Coudurier G, Forissier M, Verdine JC, J. Chem. Soc.-Faraday Trans., 79, 1983
  10. Weng LT, Delmon B, Appl. Catal., 81, 141, 1992
  11. Ozkan US, Schrader GL, J. Catal., 95, 120, 1985
  12. Ozkan US, Schrader GL, Appl. Catal., 23, 327, 1985
  13. Ozkan US, Gill RC, Smith MR, Appl. Catal., 62, 105, 1990
  14. Qiu FY, Weng LT, Ruiz P, Delmon B, Appl. Catal., 47, 115, 1989
  15. Liu ZX, Xie K, Li YQ, Bao QX, J. Catal., 119, 249, 1989
  16. Liu ZX, Bao QX, Wu NJ, J. Catal., 113, 45, 1988
  17. Zhou B, Chuang KT, Guo X, J. Chem. Soc.-Faraday Trans., 87(22), 3695, 1991
  18. Ruiz P, Delmon B, Catal. Today, 3, 199, 1988
  19. Na SE, Park DW, Chung JS, Choi MJ, HWAHAK KONGHAK, 30(4), 457, 1992
  20. Weng LT, Spitaels N, Yasse B, Ladriere J, Ruiz P, Delmon B, J. Catal., 132, 319, 1991
  21. Na SE, Kim KH, Chung JS, Park DW, J. Korean Ind. Eng. Chem., 3(4), 717, 1992
  22. Ai M, J. Catal., 85, 324, 1984
  23. Gates BC, Katzer JR, Schuit GC, "Chemistry of Catalytic Process," McGraw-Hill, New York, 349-384, 1979
  24. Keulks GW, Krenzke LD, Motermann TM, Adv. Catal., 27, 183, 1979
  25. Bondareva VM, Andrushkevich TV, Gorshkova TP, Popova G, Davydov AA, React. Kinet. Catal. Lett., 12(1), 25, 1979