Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.2, 259-264, 2002
공기리프트 생물막 반응기에서의 폐수 질화
Wastewater Nitrification in Airlift Biofilm Reactors
온도와 용존산소농도의 질화속도에 미치는 영향을 조사하기 위하여 질화 생물막을 27.7 L의 공기리프트 생물반응기에서 직경 0.613 mm 활성탄 입자 담체에 형성시켰다. 질화 박테리아의 최대 비생장속도보다 큰 희석률을 이용하여 130일 동안 운전한 후에 두께 0.140 mm의 생물막이 형성되었다. 공기유속과 암모니움 부하율을 순차적으로 증가시킴에 따라, 암모니움 산화속도는 단계적으로 증가하여 6.34 cm/s 상승관 공기유속 및 30 ℃ 온도에서 5 kg N/m(3)ㆍd의 최대속도를 나타내었다. 암모니움 산화속도는 용존산소농도를 증가시킴에 따라 증가하였다. 아질산 산화속도는 반응기 운전 초기에는 용존산소농도에 거의 영향을 받지 않았다. 그러나 후기에 형성되는 생물막은 아질산 축적을 소멸시켰으며 용존산소농도가 증가함에 따라 증가하는 아질산 산화속도를 보였다. 질화속도는 온도를 증가시킴에 따라 5 ℃에서 20 ℃의 낮은 온도범위에서는 상당히 증가하였고 20 ℃에서 30 ℃의 높은 온도범위에서는 약간 증가하였다. 높은 온도에서는 생물막에서의 산소 물질확산이 질화 반응속도론 보다 중요한 역할을 하였다.
The nitrifying biofilm was formed on the carriers of granular activated carbon with the diameter of 0.613 mm in the airlift bioreactor of 27.7 L to investigate the influences of temperature and dissolved oxygen concentration on the nitrification rate. The biofilm of 0.140 mm thickness was obtained after the operation of 130 days with the dilution rate higher than the maximum specific growth rate of nitrifying bacteria. As raising alternately air velocity and ammonium loading rate, ammonium oxidation rate increased stepwise up to the maximum value of 5 kg N/m(3)ㆍd at the riser air velocity of 6.34 cm/s and the temperature of 30 ℃. The ammonium oxidation rate increased with increasing the dissolved oxygen concentrations, while the nitrite oxidation rates were almost independent from the dissolved oxygen concentration during the early stages of the reactor operation. The biofilm formed at the late phase, however, led the nitrite build-up to disappear and exhibited the nitrite oxidation rates which increased with the dissolved oxygen concentration. As raising temperature, the nitrification rate increased appreciably at the low temperatures of 5 ℃ to 20 ℃ and then slightly at the high temperatures of 20 ℃ to 30 ℃. The oxygen diffusion in the biofilm played a dominant role at high temperatures rather than the nitrification kinetics.
[References]
  1. Siegel MH, Robinson CW, Chem. Eng. Sci., 47, 3215, 1992
  2. Heijnen SJ, Mulder A, Weltevrede R, Hols PH, Leeuwen HLJM, Chem. Eng. Technol., 13, 202, 1990
  3. Benniger RW, Sherrard JH, J. WPCF, 50, 2132, 1978
  4. Adams CE, Eckenfelder WW, J. WPCF, 49, 413, 1977
  5. Prakasama TBS, Robinson WE, Lue-Hing C, Proc. Ind. Waste Conf., Purdue University, Lafayette, 745, 1977
  6. Stensel HD, Brenner RC, Lee KM, Melcer H, Rakness K, J. Envir. Engng., 114, 655, 1988
  7. Mueller R, in Mattock B(Ed), "New Processes of Waste Treatment and Recovery," Ellis Horwood, Chichester, 1978
  8. Haug RT, McCarty PL, J. WPCF, 44, 2086, 1972
  9. Tsunoda S, Shimada K, Aoyagi Y, Kagaku Kogaku, 40, 402, 1976
  10. Tanaka H, Uzman S, Dunn IJ, Biotechnol. Bioeng., 23, 1683, 1981
  11. Cooper PF, Williams SC, Wat. Sci. Tech., 22, 431, 1990
  12. Gauntlett RB, in P.F. Cooper and Atkinson B(Eds.) "Biological Fluidized Bed Treatment of Water and Wastewater," Ellis Horwood, Chichester, 48, 1981
  13. Tijhuis L, Loosdrecht MCM, Heijnen JJ, Wat. Sci. Tech., 26, 2207, 1992
  14. Heijnen JJ, Loosdrecht MCM, Mulder R, Weltevrede R, Mulder A, Wat. Sci. Tech., 27, 253, 1993
  15. Hem LJ, Rusten B, Odegaard H, Wat. Res., 28, 1425, 1994
  16. Chen SS, Chen WC, Wat. Sci. Tech., 30, 131, 1994
  17. Wijffels RH, Gooijer CD, Kortekaas S, Tramper J, Biotechnol. Bioeng., 38, 232, 1991
  18. Monbouquette HG, Sayles GD, Ollis DF, Biotechnol. Bioeng., 35, 609, 1990
  19. Heijnen JJ, Loosdrecht MCM, Mulder A, Tijhuis L, Wat. Sci. Tech., 26, 647, 1992
  20. Shin SH, Suh IS, Chang IY, Korean J. Biotechnol. Bioeng., 16, 337, 2001
  21. "Water Analysis Handbooks," 2nd ed., Hach, loveland, 1992
  22. Heo CH, Sub IS, Theor. Appl. Chem. Eng., 7, 4015, 2001
  23. Heijnen JJ, Hols J, Vanderlans RG, Vanleeuwen HL, Mulder A, Weltevrede R, Chem. Eng. Sci., 52(15), 2527, 1997
  24. Denac M, Uzman S, Tanaka H, Dunn IJ, Biotechnol. Bioeng., 25, 1841, 1983
  25. Garrido JM, Vanbenthum WA, Vanloosdrecht MC, Heijnen JJ, Biotechnol. Bioeng., 53(2), 168, 1997
  26. Suh IS, HWAHAK KONGHAK, 39(3), 368, 2001
  27. Suh IS, HWAHAK KONGHAK, 39(4), 501, 2001
  28. Wanner O, Gujer W, Biotechnol. Bioeng., 28, 314, 1986
  29. Jeris JS, Owens RW, Hickey R, J. WPCF, 47, 816, 1977