Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.2, 218-223, 2002
가압유동층에서 무연탄 연소시 열전달 특성
Heat Transfer Characteristics in a Pressurized Fluidized Bed for Anthracite Coal Combustion
벤치 규모의 가압유동층 연소로에서 무연탄 연소시 수평 전열관과 유동층간의 열전달 특성을 연구하였다. 조업 변수인 유동화속도(0.9, 1.1, 1.3 m/s), 유동층온도(850, 900, 950 ℃) 그리고 공기과잉률(10, 20, 30%) 등이 수평관의 경막열전달계수에 미치는 영향을 검토하였다. 유동층영역 내 수평전열관의 열전달계수는 유동층의 온도에 비례하고, 유동화 속도에 반비례하는 경향을 나타내었다. 가압유동층 연소로에서 수평전열관의 경막열전달계수는 상압기포유동층에서의 열전달계수(200 W/m(2)K)보다 매우 높은 370-720 W/m(2)K의 범위를 보였다. 가압유동층에서 열전달계수는 조업변수 함수의 무차원군과 차원식의 상관 관계식으로 도출되었다.
Heat transfer characteristics between the horizontal tube and the fluidized-bed proper have been investigated in a bench-scale pressurized fluidized-bed combustor for the combustion of anthracite coal. Effects of fluidizing velocity(0.9, 1.1, 1.3 m/s), bed temperature(850, 900, 950 ℃) and amount of excess air(10, 20, 30%) on the individual heat transfer coefficient have been determined. The heat transfer coefficient has increased with increasing bed temperature, while it has decreased with increasing fluidizing gas velocity. The values of heat transfer coefficient in the pressured fluidized-bed combustor have been in the range of 370-720 W/m(2)K, which are much higher than those of typical value(200 W/m(2)K) in the atmospheric bubbling fluidized-bed combustor. The heat transfer coefficients have been well correlated in terms of operating parameters by way of dimensionless as well as dimensional forms.
[References]
  1. Park YS, Choi JH, Son JE, Maeng KS, HWAHAK KONGHAK, 22(2), 107, 1984
  2. Park YS, Son JE, HWAHAK KONGHAK, 31(3), 287, 1993
  3. George SE, Grace JR, AIChE J., 28, 759, 1982
  4. Molerus O, Schweinzer J, Proc. 9th International Con. on Fluidized Bed Combustion, 624, 1987
  5. Wiman J, Almstedt AE, Chem. Eng. Sci., 52(16), 2677, 1997
  6. Kang Y, Kim YR, Ko MH, Seo YC, Jin GT, Son JE, Kim SD, HWAHAK KONGHAK, 35(2), 282, 1997
  7. Song BH, Kang Y, Seo YC, Jin GT, Son JE, Kim SD, HWAHAK KONGHAK, 34(5), 619, 1996
  8. Catipovic NM, Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1979
  9. Yates JG, Chem. Eng. Sci., 51(2), 167, 1996
  10. Choi JC, Kim YJ, Moon SH, Kim SD, HWAHAK KONGHAK, 23(3), 153, 1985
  11. Kang SH, Kim JS, Kim SJ, Kang Y, Kim SD, Fan LT, Powder Technol., in press, 2001
  12. Kang Y, Song PS, Yun JS, Yeong YY, Kim SD, Chem. Eng. Commun., 117, 31, 2000
  13. Jin GT, Son JE, Shun DW, Yi CK, Park JH, Han KH, Bae DH, Cho SH, "Development of Bench Scale Pressurized Fluidized Bed Combustion," KIER-973402, 149, 1997
  14. Jin GT, Son JE, Shun DW, Yi CK, Park JH, Han KH, Bae DH, Cho SH, "Development of Bench Scale Pressurized Fluidized Bed Combustion," KIER-A03708, 28, 2000
  15. Kunii D, Levenspiel O, "Fluidization Engineering," Willey N.Y.,, 265, 1969
  16. Cuenca MA, Anthony EJ, "Pressurized Fluidized Bed Combustion,", 81, 1995
  17. Ma Y, Zhu JX, Chem. Eng. Sci., 55(5), 981, 2000
  18. Perry RT, Green D, "Perry's Chemical Engineering Handbook,", 3, 254, 1984