Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.2, 196-202, 2002
암모니아-물 기포분사형 흡수기의 물질전달 모사 및 실험 연구
The Study on Model Simulation and Experiment for Mass Transfer in Bubble Mode Absorber of Ammonia and Water
흡수기는 흡수식 열펌프 시스템에서 중요한 구성요소일 뿐만 아니라 흡수기의 성능은 전체 시스템에 중요한 영향을 미친다. 본 연구에서는 기포분사형 흡수기에 대한 수학적 모사와 흡수실험을 동시에 수행하였다. 일정하게 흘러가는 용액 속으로 흡수기 하단부에서 암모니아 기체를 분사하여 그 기체의 도달 높이를 수학적 모사와 실제 흡수실험을 통하여 산출하였다. 주입 기체의 양이 많을수록 그 흡수높이가 증가하였으며, 주입용액의 온도와 농도가 낮을수록, 또한 주입용액과 주입기체의 방향이 서로 향류인 경우 분사되는 기체의 흡수영역이 감소하였다. 소량인 물의 물질전달은 무시하고 암모니아 기상에서 액상으로의 단방향 물질전달로 가정한 이 수학적 모사결과와 실험결과를 비교한 결과 유사한 결과 값을 보였으며, 이를 통하여 본 모델의 적용 타당성을 검증할 수 있었다.
An absorber is a major component in the absorption refrigeration systems and its performance greatly affects the overall system performance. In this study, both the numerical and experimental analyses on the absorption process of bubble mode absorber were performed. Gas was injected into the bottom of absorber at constant solution flow rate. Region of gas absorption was estimated by both the numerical and experimental analyses. Higher flow rate of gas makes the region of gas absorption increases. As the temperature and concentration of input solution decrease, the region of gas absorption goes down. In addition, the absorption performance on the countercurrent was superior to that of cocurrent flow. Mathematical model equations were derived from material balance for gas and liquid phase based on the negligible mass transfer of water from liquid to gas phase. Comparison of model simulation and experimental results shows similar values. This means that this numerical model can be applied for design of bubble mode absorber.
[References]
  1. Lee KB, "Study of the Absorber for Ammonia-Water Absorption Heat Pump," Ph. MA. Thesis, Korea University, Seoul, Korea, 2001
  2. Lee KB, Chun BH, Lee JC, Park CJ, Kim SH, Exp. Heat Transf., 15(3), 191, 2002
  3. Kang Y, Lim WM, Kim SD, HWAHAK KONGHAK, 25(5), 460, 1987
  4. Lee CH, Ha JJ, Lee JC, Chun BH, Lee KB, Kim SH, HWAHAK KONGHAK, 40(2), 274, 2002
  5. Sujatha KS, Mani A, Srinivasa Murthy S, Int. Commun. Heat Mass Transf., 26(7), 975, 1999
  6. Herbine GS, Perez-Blanco H, ASHRAE Trans., 101, 1324, 1995
  7. Sujatha KS, Mani A, Srinivasa Murthy S, Heat Mass Transf., 32(4), 255, 1997
  8. Merrill TL, Perez-Blanco H, Int. J. Heat Mass Transf., 40(3), 589, 1997
  9. McCabe WL, Smith JC, Harriott P, "Unit Operations of Chemical Engineering," McGraw-Hill, Singapore, 115, 1993
  10. Seader JD, Ernest JH, "Separation Process Principles," Wiley, New York, 123, 1998
  11. Treybal RE, "Mass-transfer Operations," McGraw-Hill, New York, 139, 1980
  12. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases and Liquids," McGraw-Hill, Singapore, 1986
  13. Perry RH, Green DW, "Perry's Chemical Engineers' handbook," 6th ed., McGraw-Hill International Editions, Japan, 1984
  14. Korean Thermophysical Properties Data Bank of Thermodynamics and Properties Lab. of Korea University