Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.2, 179-187, 2002
응집과 파괴현상을 고려한 결정화공정의 동적모사법 연구
A Study on the Dynamic Simulation of Crystallization Processes Including Agglomeration and Breakage
본 연구는 안료, 제약, 세제 등 다양한 화학공정과 관련되어 있는 중요한 분리방법의 하나인 결정화공정의 동적모사법에 관한 연구이다. 결정화공정에서는 핵생성, 성장, 응집, 파괴 등 다양한 현상이 나타나는데 그 모델이 일반적인 상미분방정식 및 산술식 뿐만 아니라 편미분방정식과 적분식을 포함하여 매우 복잡하기 때문에, 동적모사가 어려웠고 다른 화학공정과 달리 설계 및 해석 등이 주로 실험에 의존하여 왔다. 본 연구의 모사법은 특성법에 기초하여 기존 방법론들의 해가 보였던 불안정성과 수치적 확산 문제를 피하도록 하였다. 격자를 적응적으로 생성시키고 제거하는 적응격자법을 특성법과 결합하여 수치해의 정확성과 효율성을 증가시켰다. 또한 응집과 파괴속도의 계산과정과 격자 적응화 과정에서 결정의 두 모멘텀인 결정의 수와 질량을 보존하도록 하는 수치적 계산전략을 개발하였다. 이렇게 제안된 방법의 성능을 사례연구를 통해 확인하였다.
This study focuses on the simulation method for crystallization processes, that is the most important unit operations and is widely used in the chemical industry such as pigments, pharmaceuticals, and detergents, etc. The process includes the kinetics of nucleation, growth, agglomeration, and breakage. Because the models are very complex to become partial and ordinary differential, algebraic and integral equations(IPDAE), it is very difficult to get a numerical solution. And, it makes process design and analysis depend on experiments. In this study, the simulation is based on the method of characteristics to avoid the difficulties of numerical diffusion and stability that bother the previous methods in this area. In order to improve the accuracy and efficiency of the simulation, this study combines the method of characteristics with the adaptive mesh method, which adaptively adds and eliminates meshes as the solution varies. The proposed method can conserve crystal number and mass in the representation of agglomeration/breakage event and mesh adaptation. The proposed method is validated through the simulation of case studies.
[References]
  1. Tavare NS, "Industrial Crystallization," Plenum Press, New York USA, 1995
  2. Tavare NS, Garside J, Chivate MR, Ind. Eng. Chem. Process Des. Dev., 19, 653, 1985
  3. Ramkrishna D, Rev. Chem. Eng., 3, 49, 1985
  4. Petzold LR, Appl. Numer. Math., 3, 347, 1987
  5. Randolph AD, Larson MA, "Theory of Particulate Processes," Academic Press, New York, USA, 1971
  6. Hartel RW, Randolph AD, AIChE J., 32, 1186, 1986
  7. Zauner R, Jones AG, Chem. Eng. Sci., 55(19), 4219, 2000
  8. Kumar S, Ramkrishna D, Chem. Eng. Sci., 52(24), 4659, 1997
  9. Hill PJ, Ng KM, AIChE J., 41(5), 1204, 1995
  10. Li S, "Adaptive Mesh Methods and Software for Time-dependent Partial Differential Equations," Doctoral Dissertation, University of Minnesota, USA, 1998
  11. Huang W, Ren Y, Russell RD, J. Comp. Phys., 113, 279, 1994
  12. Sargousse A, Le Lann JM, "DISCo: Panoply of DAE Integrators Dedicated to Sove complex Chemical Engineering Problems," Internal report, User manual, INPT-ENSIGC, France, 1998
  13. Jones A, Mullin J, Chem. Eng. Sci., 29, 105, 1974
  14. Budz J, Jones AG, Mullin JW, Ind. Eng. Chem. Res., 26, 820, 1987
  15. Lim YI, Le Lann JM, Meyer XM, Joulia X, Lee G, Yoon ES, Chem. Eng. Sci., in print, 2002
  16. Edgar TF, Himmelblau DM, "Optimization of Chemical Processes," McGraw-Hill, New York, USA, 1987