Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.2, 139-145, 2002
티타늄 함유 ZSM-5 촉매의 에탄올에 의한 톨루엔 알킬화 반응 특성
Alkylation of Toluene with Ethanol over a Ti-ZSM-5 Catalyst
티타늄 함유 ZSM-5(Ti-ZSM-5) 촉매 상에서 톨루엔의 알킬화 반응을 수행하여 촉매의 활성 및 생성물 분포를 이온교환 H-ZSM-5 및 Mg 함침 촉매의 성능과 비교하였고, 촉매 반응에 미치는 제반 인자들의 영향을 살펴보았다. 톨루엔의 에탄올에 의한 알킬화 반응은 약 350 ℃의 반응온도에서 ethyltoluene, 그리고 이성체 중에서 p-ethyltoluene의 선택도가 가장 높게 나타났으며, 부반응을 억제하기 위해서는 높은 톨루엔/에탄올 몰비와 짧은 접촉시간이 필요하였다. Ludox 실리카를 이용하여 제조한 Ti-ZSM-5(Ti=1%) 촉매는 순수한 ZSM-5 촉매에 비하여 높은 para 선택도를 나타내었으며, 반응이 진행되는 동안 탄소누적에 의한 비활성화가 느리게 진행되었다. NH3-TPD 분석결과 Ti-ZSM-5 촉매는 산점의 세기와 수가 순수한 ZSM-5에 비하여 현저히 감소하였고, p-ethyltoluene의 선택도 향상에 기여하였다고 판단된다.
Performances of Ti-ZSM-5 catalysts for toluene alkylation using ethanol were evaluated and compared with those of H-ZSM-5 or Mg-modified ZSM-5. Investigation on the influences of reaction parameters on the alkylation reaction was also conducted. The highest ethyltoluene and p-ethyltoluene, among the isomers, selectivities were obtained ca 350 ℃, and higher toluene/ethanol molar ratio and shorter contact time were necessary in order to suppress the side reactions. Ti-ZSM-5(1% Ti) prepared using Ludox silica showed enhanced para-selectivity compared to pure ZSM-5 and more resistant toward deactivation caused by carbonaceous deposit. According to the NH3-TPD analysis, acid strength and amounts of acid sites of ZSM-5 were significantly reduced by the incorporation of titanium into the zeolite framework, which were responsible for the improved p-ethyltoluene yield.
[References]
  1. Kaeding WW, Young LB, Prapas AG, Chemtech, 12, 556, 1982
  2. Yashima T, Ahmad H, Yamazaki K, Katsuta M, Hara N, J. Catal., 16, 151, 1970
  3. Niwa M, Kunieda T, Kim JH, "Shape-selective Catalysis," ACS Symposium Series 738, American Chemical Society, 181, 2000
  4. Bellussi G, Carati A, Clerici MG, Esposito A, Stud. Surf. Sci. Catal., 31, 421, 1991
  5. Taramasso M, Perego G, Notari B, U.S. patent, 4, 410, 1983
  6. Taramasso M, Perego G, Notari B, U.S. patent, 4, 501, 1983
  7. Ko YS, Hong SB, Kim GJ, Ahn WS, J. Korean Ind. Eng. Chem., 9(5), 639, 1998
  8. Topsoe NY, Pedersen K, Derouane EG, J. Catal., 70, 41, 1981
  9. Chen MC, Chu SJ, Chang NS, Chen PY, Chuang TK, Chen LY, Stud. Surf. Sci. Catal., 38, 253, 1987
  10. Sotelo JL, Uguina MA, Valverde JL, Serrano DP, Ind. Eng. Chem. Res., 32, 2548, 1993
  11. Derewinski M, Haber J, Ptaszynski J, Shiralkar VP, Dzwigaj S, Stud. Surf. Sci. Catal., 18, 209, 1984
  12. Chen LZ, Feng YQ, Zeolites, 12, 347, 1992
  13. Young LB, Butter SA, Kaeding WW, J. Catal., 76, 418, 1982
  14. Lonyi F, Engelhardt J, Kello D, Zeolites, 11, 169, 1991
  15. Kaeding WW, Chu C, Young LB, Weinstein B, Butter SA, J. Catal., 67, 159, 1981
  16. Paparatto G, Moretti E, Leofanti G, Gatti F, J. Catal., 105, 227, 1987
  17. Fraenkel D, Ind. Eng. Chem. Res., 29, 1814, 1990
  18. Wang I, Ag C, Lee BJ, Chen MH, Appl. Catal., 54, 257, 1989
  19. Reddy JS, Kumar R, Csicsery SM, J. Catal., 145(1), 73, 1994
  20. Sotelo JL, Uguina MA, Valverde JL, Serrano DP, Appl. Catal. A: Gen., 114(2), 273, 1994
  21. Thangaraj A, Kumar R, Silcasanker S, Zeolites, 12, 135, 1992