Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.32, No.1, 103-112, 1994
혼합 좌표계를 이용하는 Finite Element Method에 의한 충진층의 유체-고체계 해석 II. 염소 유기화합물의 단일성분계에 대한 활성탄소의 흡착실험과 모사:매개변수 추정
Analysis of Fluid-Solid System in a Fixed-Bed by Finite Element Method Using Mixed Coordinate II. Experimental Study and Simulation of Activated Carbon Adsorption for Single-Solute Chloroorganics : Parameter Estimation
활성탄에 의한 수용액중의 염소유기 화합물을 제거하기 위한 흡착제의 성능을 조사하고자 흡착속도와 충진층 흡착관에 대한 실험방법과 예측모델이 사용되었다. 회분식반응기와 충진층 흡착관 모델식의 해는 finite element method(FEM)의 수치해법에 의해 구해졌다. 단일성분인 세 가지 용질은 chloroform(CF), monochloroacetaldehyde(MCA) 및 dichloroacetaldehyde(DCA)를, 그리고 흡착제는 활성탄이 사용되었다. 흡착등온, 흡착속도 및 충진층 흡착관의 유출액의 농도 연역분포에 대한 실험데이터를 FEM에 의한 예측모델식의 모사결과와 비교하였다. 예측모델의 수치모사가 실험결과와 잘 일치하였으므로 최적적합으로 구한 매개변수들은 정확한 흡착속도 곡선과 파과곡선을 재생시킬 수 있었다.
Experimental studies and perdictive models for adsorption rate and fixed-bed adsorption column were used to investigate the performance of activated carbon in the removal of chloro-organic compounds in aqueous solution. Model equations in batch-reactor and fixed-bed column were solved by the technique of finite element method. Three species, chloroform(CF), monochloroacetaldehyde(MCA) and dichloroacetaldehyde(DCA), were the single solutes studied and activated carbon(Filtsorb:F-400) was used as a adsorbent. Experimental studies for adsorption isotherm, adsorption rate and for concentration history profiles bent. Experimental studies for adsorption isotherm, adsorption rate and for concentration history profiles of effluent from the column were compared with the results obtained from predictive models formulated by finite element method. Since the numerical simulations of the model were in good agreement with experimental data, the parameters estimated by the best fitting could make the models regenerate accurate adsorption rate and breakthrough curves.
[References]
  1. Meyer OW, Weber TW, AIChE J., 13, 457, 1967
  2. Lee RG, Weber TW, Can. J. Chem. Eng., 45, 60, 1969
  3. Weber WJ, Crittenden JC, J. Water Pollu. Control Fed., 47, 924, 1975
  4. Weber WJ, Liu KT, Chem. Eng. Commun., 6, 49, 1980
  5. Ragkavan NS, Ruthven DM, AIChE J., 29, 922, 1983
  6. Raghavan NS, Ruthven DM, Chem. Eng. Sci., 39, 1201, 1984
  7. Giudice SD, Trotta A, Chem. Eng. Sci., 33, 697, 1978
  8. Mills PL, Lai SS, Dudukovic MP, Ind. Eng. Chem. Fundam., 24, 64, 1985
  9. Mills PL, Lai SS, Dudukovic MP, Ramachandran PA, Ind. Eng. Chem. Res., 27, 191, 1988
  10. Mills PL, Lai SS, Dudukovic MP, Rumachandran PA, Comput. Chem. Eng., 12, 37, 1988
  11. Tezduyar TE, Jeung YO, Comp. Meth. Mech. Eng., 59, 307, 1986
  12. Tezduyar TE, Jeung YO, Deans HA, Int. J. Numer. Fluid., 7, 1013, 1986
  13. Huh JD, Park PW, Jung YO, Korean J. Chem. Eng., 6(2), 112, 1989
  14. Jeung YO, Deans HA, Tezduyan TE, SPE, 9683, 1989
  15. Jeung YO, Deans HA, Tezduyar TE, Int. J. Numer. Methods Fluids, 11, 769, 1990
  16. Park YO, Deans HA, Tezduyar TE, Soc. Petro. Eng. (SPE) Formation Evanluation, Sept., 1991
  17. Park PW, Kim IS, Cho TJ, Jeong(Park) YO, HWAHAK KONGHAK, 30(5), 594, 1992
  18. Rasmuson A, Neretnieks I, AIChE J., 26, 686, 1980
  19. Crittenden JC, Weber WJ, J. Environ. Eng. Div. Eng., 104(EE2), 185, 1978
  20. Crittenden JC, Weber WJ, J. Environ. Eng. Div. Eng., 104(EE3), 1978
  21. Crittenden JC, Weber WJ, J. Environ. Eng. Div. Eng., 104(EE6), 1978
  22. Lee MC, Snoeyink VL, Crittenden JC, J. AWWA, 440, 1981
  23. Wilke CR, Chang P, AIChE J., 1, 264, 1955
  24. Williamson JE, Bazare KE, Geankoplis CJ, Ind. Eng. Chem. Fundam., 2, 126, 1963
  25. Park YO, Ph.D. Thesis, University of Houston, 1989
  26. Crittenden JC, Sontheimer H, Summer RS, "Activated Carbon for Water Treatment," 2nd eds., DVGW-Forschungsstelle Engler-Bunte-Institut Universitat Karlsruhe, 1988
  27. Furusawa T, Smith JM, Ind. Eng. Chem. Fundam., 12(2), 197, 1973