Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.32, No.1, 79-85, 1994
기상 반응법에 의한 철-코발트 합금 초미분체 제조
Manufacture of UItrafine Iron-Cobalt Alloy Powders Using Gas Phase Reaction
염화철(II)과 염화코발트(II) 혼합물의 증기를 수소로 환원하는 방법에 의하여 0.1 미크론 이하의 철-코발트 합금 초미분체를 제조하였다. 철, 코발트의 혼합조성, 철, 코발트 염화물의 농도, 수소와 운반가스(알곤)의 유량, 초미분체 생성후 산화피막 형성조건 및 초미분체 생성시 자장을 걸어 주었을 때의 영향 등이 실험적으로 조사되었다. 생성된 철-코발트 합금 초미분체에 대하여 ICP(inductively coupled plasma), PIXE(proton induced X-ray emission), XRD(X-ray diffraction), EDS(energy dispersive X-ray spectroscopy), XPS(X-ray photoemis-sion spectroscopy), TEM(transmission electron microscopy), VSM(vibrating sample magnetometer)을 이용 입자크기분포, 불순물의 조성, 결정성 및 자기적 성질을 측정하였다. 생성된 철-코발트 합금 초미분체의 크기는 0.025-0.045 미크론 범위이었으며, 불순물로 존재한 염소와 산소는 주로 분체의 표면에 존재하는 것으로 나타났다. 초미분체가 생성되는 부분에 자장을 걸어 줌으로써 철-코발트 합금 초미분체의 사슬이 보다 곧게 되었으며 이에 따라 항자력의 값이 증가하였다. 제조된 철-코발트 합금 초미분체의 최대 항자력값은 1,466 oersted이었고, 포화자화값은 130-180 emu/g 범위로 나타났다.
Ultrafine iron-cobalt alloy powders having diameters less than 0.1 micron were manufactured by hydrogen reduction of vapor mixtures of iron(II) chloride and cobalt(II) chloride. The effects of the following variables on chemical, morphological and magnetic properties of the powders were experimentally investigated : composition of iron and cobalt in the alloy powder, concentration of the metal chlorides in the vapor, flow rates of hydrogen and carrier gas(argon), conditions for the post-formation of oxide films on the powder surface, and the magnetic field applied where the powder is formed. Particle size distribution, chemical compositions of impurities, crystal structure and magnetic properties of the powders were measured using ICP, PIXE, XRD, EDS, XPS, TEM and VSM. The average particle size of the powder was in the range of 0.025 to 0.045 micron. Most of oxygen and chlorine, major impurities in the powder, were observed to exist on the surface of the powder. By applying a magnetic field where the powder is being formed, the curved chain of iron-cobalt alloy particles was straightened, and a higher coercive force was obtained. The maximum coercive force of the iron-cobalt powders was 1,466 oersted. The saturation magnetization of the powder ranged from 130 to 180 emu/g.
[References]
  1. Mendelsohn LI, Luborsky FE, Paine TO, J. Appl. Phys., 26, 1274, 1955
  2. Tanaka T, Tamagawa N, Jpn. J. Appl. Phys., 6, 1096, 1967
  3. Tasaki A, IEEE Trans. Magn., 15, 1540, 1979
  4. Otsuka K, Yamamoto H, Yoshizawa A, Jpn. J. Chem., 6, 869, 1984
  5. Park KY, Jang HD, Choi CS, J. Aerosol Sci., 22, S113, 1991
  6. Lamprey H, Ripley RL, J. Electrochem. Soc., 109, 713, 1962
  7. Morooka S, Kobata A, Yasutake T, Ikemizu K, Kato Y, Kag. Kog. Ronbunshu, 13, 481, 1987
  8. Leonard B, "Powder Diffraction File," Set. 6-696, Joint Committee on Powder Diffraction Standards, 1967