Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.1, 121-127, 2002
유전체 플라즈마 방전을 이용한 톨루엔 분해 공정에서 충진물, 인가 전압, 가스 조성 및 전압 극성이 분해효율 및 전력 전달에 미치는 영향
Influences of Packing Materials, Applied Voltage, Gas Composition and Voltage Polarity on the Decomposition of Toluene and the Power Delivery in a Dielectric Barrier Plasma Reactor
교류 고전압을 이용하는 유전체 플라즈마 반응기에서 휘발성유기화합물의 일종인 톨루엔의 분해에 대한 연구가 수행되었다. 유전체 충진물로는 직경 4-6 mm인 유리구슬과 4.75-6.7 mm인 천연 제올라이트가 사용되었다. 톨루엔의 분해 및 전력공급에 미치는 유전체의 물리적 특성, 산소함량, 피크전압, 전압 극성의 영향에 대해 고찰하였다. 유리구슬과 천연 제올라이트가 유전체 반응기에 충진되었을 때, 톨루엔의 분해 성능 및 방전 전력이 증가되었다. 천연 제올라이트는 높은 비표면적에도 불구하고, 톨루엔 분해성능 및 전력공급에 있어서 유리구슬과 유사한 특성을 보여 주었는데, 이러한 결과는 정상상태에서 유전체의 흡착성이 톨루엔의 분해에 영향을 주지 못하며, 톨루엔의 분해는 플라즈마 방전에 의해서만 활성화된다는 것을 의미한다. 유전체 충진물이 없을 때는 유전체 충진물이 있을 때보다 매우 높은 전압에서 톨루엔의 분해가 일어나기 시작하였다. 산소함량이 증가될수록 톨루엔의 분해 효율이 조금씩 증가하였는데, 이 결과는 산소에서 비롯된 활성 성분인 O 라디칼, O(+) 및 O2+ 이온 등이 질소에서 비롯된 활성 성분(N, N(+), N2+)보다 톨루엔의 분해에 있어서 더 중요한 역할을 한다는 것을 나타낸다. 교류 고전압을 반파 정류하여 양 또는 음의 고전압만을 반응기에 인가하였을 때는 방전전력 및 톨루엔 분해효율이 교류의 경우보다 크게 감소하였다. 양의 고전압과 음의 고전압은 톨루엔 분해 및 전력공급에 있어서 동일한 특성을 나타내었다. 고온 소각 및 유전체 플라즈마 공정에서 얻어진 톨루엔 분해반응 속도를 서로 비교한 결과, 고온 소각이 더 높은 분해반응속도를 가지는 것으로 나타났으나, 고온 소각을 위해서는 상당량의 열에너지가 필요하므로 유전체 플라즈마 공정이 충분히 경쟁 가능한 기술임을 알 수 있었다.
Dielectric barrier plasma reactor using AC power was applied to the decomposition of toluene. Natural zeolite of 4.75-6.7 mm and glass beads of 4 to 6 mm in diameter were used as the dielectric packing materials. The effects of the dielectric packing materials, the oxygen content, the peak voltage, the voltage polarity on the decomposition of toluene and the power delivery were examined. When the dielectric materials such as glass beads and natural zeolite were packed in the reactor, the performance for the decomposition of toluene and the discharge power increased. Despite the adsorption capability, the zeolite showed similar decomposition performance to the glass beads, which indicates that the adsorption capability does not affect the decomposition of toluene in steady state condition. In the absence of the dielectric packing material, higher voltage was required to decompose toluene. As the oxygen content was increased, the decomposition efficiency slightly increased. When the AC voltage was rectified to positive or negative half-wave, the discharge power and the decomposition efficiency greatly decreased. The decomposition efficiency of toluene was identical, regardless of the voltage polarity changed by half-wave rectification. Although the thermal incineration has larger decomposition rate constant than the dielectric barrier plasma process , it requires a lot of thermal energy to heat the gas to a high temperature, and thus the dielectric barrier plasma process is considered to be sufficiently competitive to the thermal incineration.
[References]
  1. Yan K, Hui H, Cui M, Miao J, Wu X, Bao C, Li R, J. Electrostatics, 44, 17, 1998
  2. Oda T, Kato T, Takahashi T, Shimizu K, IEEE Trans. Ind. Appl., 34(2), 268, 1998
  3. Jeong HK, Kim SC, Han C, Lee H, Song HK, Na BK, Korean J. Chem. Eng., 18(2), 196, 2001
  4. Synder HR, Anderson GK, IEEE Trans. Plasma Sci., 26(6), 1695, 1998
  5. Ogata A, Shintani N, Mizuno A, Kushiyama S, Yamamoto T, IEEE Trans. Ind. Appl., 35(4), 753, 1999
  6. Choi YS, Song YH, Kim SJ, Kim BU, HWAHAK KONGHAK, 38(3), 423, 2000
  7. Penetrante BM, Hsiao MC, Bardsley JN, Merritt BT, Vogtlin GE, Wallman PH, Kuthi AC, Burkhart P, Bayless JR, Emerging Solutions to VOC & Air Toxics Control Conference, Clear-water Beach, Florida, 1996
  8. Gam SK, "Synthesis of Zeolite Using Scoria and Comparison of the Adsorption Capability of Heavy Metals between the National and Synthesized Zeolites," Research Report, Cheju National University, South Korea, 1999
  9. Rosocha LA, Anderson GK, Bechtold LA, Coogan JJ, Heck HG, Kang M, McCulla WH, Tennant RA, Wantuck PJ, "Non-Thermal Plasma Techniques for Pollution Control: Part B," NATO ASI Series, Berlin, Germany, Springer-Verlag, 281, 1993
  10. Choi YR, Lee YH, Chung WS, Chung JW, Cho MH, Namkung W, Korean Society of Environmental Engineers Spring Meeting, May 11-12, 2001
  11. Kuchler UP, Thesis, Rheinisch-Westfalischen Hochschule, Aachen, Germany, 1990
  12. Yamamoto T, Lawless PA, Owen MK, Ensor DS, "Non-Thermal Plasma Techniques for Pollution Control: Part B," NATO ASI Series, Berlin, Germany, Springer-Verlag, 223, 1993
  13. Mok YS, Kim JH, Nam IS, Ham SW, Ind. Eng. Chem. Res., 39(10), 3938, 2000
  14. Mok YS, Ham SW, Nam I, IEEE Trans. Plasma Sci., 26(5), 1566, 1998
  15. Mizuno A, Clements JS, Davis RH, IEEE Trans. Ind. Appl., 22(3), 516, 1986
  16. Mok YS, Lee HW, Hyun YJ, Ham SW, Nam IS, Korean J. Chem. Eng., 18(5), 711, 2001
  17. Cooper CD, Alley FC, "Air Pollution Control: A Design Approach," Waveland Press, Inc., 1994