Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.1, 100-105, 2002
전기장 인가에 따른 DNA 신장에 관한 AFM 연구
An AFM Study for Stretching Electric Field Induced DNA
본 연구에서는 마이카 표면상에서 전기장에 의한 극히 낮은 농도의 DNA 신장에 대한 효율적인 방법론을 제시하였다. 전기장에 의한 DNA 신장을 AFM형상으로 분석한 결과, DNA 농도범위가 약 57×10(-3) ng/mL-57×10(-6) ng/mL 일 때 매우 잘 적용되며, 신장된 DNA는 두 전극 중앙에 존재하였다. 또한, 일반 마이카, Mg(2+) 처리된 마이카, 그리고 AP-마이카 표면들에 대한 신장 효율의 차를 기술하였다. 동일한 실험조건 하에서 AP-마이카의 표면이 가장 좋은 효율의 DNA 신장 결과를 나타내었다.
An effective method of DNA stretching using electric field on mica surface was proposed for extremely low solution concentration of DNA. DNA stretching based on electric field was observed by AFM and well applied on the concentration range from 57×10(-3) ng/mL to 57× 10(-6) ng/mL. Stretched DNA existed in the middle of two electrodes. The difference in stretching efficiency for the different surfaces of bare mica, Mg(2+) soaked mica and AP-mica was discussed. The best performance of stretching was found from the surface of AP-mica under the same experimental condition.
Keywords: AFM; NSOM; DNA; Mica
[References]
  1. Kleinschmidt AK, "Monolayer Techniques in Electron Microscopy of Nucleic Acid Molecules," Academic Press, New York, 1968
  2. Peters TD, Newlon CS, Byers B, Fangman WL, "Chromosome Structure and Function. Cold Spring Harbor Laboratory," Cold Spring Harbor, 18, 9, 1974
  3. Kavenoff R, Klotz LC, Zimm BH, "Chromosome Structure and Function. Cold Spring Harbor Laboratory," Cold Spring Harbor, 18, 1, 1974
  4. Moudrianakis EN, Beer M, Proc. Natl. Acad. Sci. U.S.A., 53, 565, 1965
  5. Yanagida M, Hiraoka Y, Katsura L, "Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory," Cold Spring Harbor, 47, 177, 1974
  6. Smtih SB, Finzi L, Butamente C, Science, 258, 1122, 1992
  7. Smith SB, Aldrigde PK, Callis JB, Science, 243, 203, 1989
  8. Engh G, Sach R, Trask BJ, Science, 257, 1410, 1992
  9. Wiegant J, Ried T, Nederlof PM, Ploeg M, Tanke HJ, Raap AK, Nucl. Acids Res., 19, 3237, 1991
  10. Langer-Safer PR, Levine M, Ward D, Proc. Natl. Acad. Sci. U.S.A., 79, 4381, 1982
  11. Lyubchenko YL, Oden PI, Lamper D, Lindsay SM, Dunker KA, Nucl. Acids Res., 21, 1117, 1993
  12. Muraay MN, Hansma HG, Bezanilla M, Sano T, Ogletree DF, Kolbe W, Smith CL, Cantor CL, Spengler S, Hansma PK, Salmeron M, Proc. Natl. Acad. Sci. U.S.A., 90, 3811, 1993
  13. Bottomley LA, Haseltine JN, Allison DP, Warmack RJ, Thundat T, Sachleben RA, Brown GM, Woychik RP, Jacobson KB, Ferrell TL, J. Vac. Sci. Technol. A, 10, 591, 1992
  14. Bustamente C, Vesenka J, Tang CL, Rees W, Guthold M, Biochemistry, 31, 22, 1992
  15. Wiegant J, Kalle W, Brookes S, Hoovers JMN, Dauwerse JG, van Ommen GJB, Raap AK, Hum. Mol. Genet., 1, 587, 1992
  16. Parra I, Windle B, Nature Genet., 5, 17, 1993
  17. Heisanen M, Karhu R, Hellsten E, Peltonen L, Kallioniemi OP, Palotie A, Biotechniques, 17, 928, 1994
  18. Posenberg C, Florijn RJ, van de Rijke FM, Blonden LAJ, Raap TK, van Ommen GJB, den Dunnen JT, Nature Genet., 10, 477, 1995
  19. Weier HUG, Wang M, Mullikin JC, Zhu Y, Cheng JF, Greulich KM, Bensimon A, Gray JW, Hum. Mol. Genet., 4, 1903, 1995
  20. Zimmermann RM, Cox EC, Nucl. Acids Res., 22(3), 492, 1994
  21. Bennink MJ, Scharer OV, Kanaar R, Sakata-Sogaw K, Schins JM, Kanger JS, de Grooth BG, Grove J, Cytometry, 36, 200, 1999
  22. Yokota H, Sunwoo J, Sarikaya M, Engh G, Aebersold R, Anal. Chem., 71, 4418, 1999
  23. Yokata H, Johnson F, Lu H, Robinson RM, Belu AM, Garrison MD, Ratner BD, Trask BJ, Miller DL, Nucl. Acids Res., 25(5), 1064, 1997
  24. Kim JM, Chang SM, Suda Y, Muramatsu H, Sens. Actuators A-Phys., 72, 140, 1999
  25. Cho HS, Lee HJ, Choi KJ, Kim JM, Kim YH, Chang SM, HWAHAK KONGHAK, 38(2), 160, 2000
  26. Park SB, HWAHAK KONGHAK, 37(6), 904, 1999
  27. Hansma HG, Revenko I, Kim K, Laney DE, Nucl. Acids Res., 24, 713, 1996
  28. Lyubchenko YL, Jacobs BL, Lindsay SM, Proc. Natl. Acad. Sci. U.S.A., 90, 2137, 1992
  29. Thundat T, Allison DP, Warmack RJ, Nucl. Acids Res., 22, 4224, 1994
  30. Hu J, Wang M, Weier HU, Frantz P, Kolbe W, Ogletree DF, Salmeron M, Langmuir, 12(7), 1697, 1996
  31. Lyubchenko YL, Jacobs BL, Lindsay SM, Stasiak A, Scanning Microscopy, 9, 705, 1995
  32. Washizu M, Kurosawa O, IEEE Trans. Ind. Appl., 26, 1165, 1990
  33. Asbury CL, van der Engh G, Biophys. J., 74, 1024, 1998
  34. Volkmuth WO, Austin RH, Nature, 358, 600, 1992
  35. Muramatsu H, Chiba N, Ataka T, Monobe H, Fujihira M, Ultramicroscopy, 57, 141, 1995
  36. Muramatsu H, Chiba N, Homma K, Kakajima K, Ataka T, Ohta S, Kusumi A, Fujihira M, Appl. Phys. Lett., 66, 3245, 1995
  37. Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V, Biophys. J., 73, 2064, 1997
  38. Stein VM, Bond JP, Capp MW, Anderson CF, Anderson MR, Biophys. J., 68, 1063, 1995
  39. Bezanilla M, Manne S, Laney DE, Lyubchenko YL, Hansma HG, Langmuir, 11(2), 655, 1995
  40. Kim JM, Chang SM, Muramatsu H, Appl. Phys. Lett., 74, 466, 1999