Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.1, 93-99, 2002
고정화 질화세균의 암모니아 제거속도식
Removal Kinetics of Low Concentration Ammonia by Immobilized Nitrifier Consortium
본 연구는 polyvinyl alcohol에 고정화한 질화세균군을 이용하는 공기 부상식 생물반응기의 총 암모니아성 질소(total ammonia nitrogen, TAN) 제거속도식을 도출하고자 하였다. 유입 합성폐수 내의 TAN 농도는 5 g/m(3), 온도는 25 ℃를 유지하여 0.05-1.0 hr의 수력학적 체류시간에서 실험하였다. TAN제거속도식은 Monod 식과 잘 일치하였으며 얻어진 최대 TAN제거속도, Rmax와 반포화상수, Ks는 각각 640 g/m(3)ㆍday, 1.667 g/m(3)이었다. 0.6-4.8 g/m(3)의 농도 범위에서는 1/2차 속도식도 TAN제거속도식으로 적합하였다. 본 공정을 정수처리 공정에 적용시킬 경우 6 g/m(3)의 농도를 가지는 원수를 TAN의 음용수 처리기준 이하로 유지하기 위해서 0.9 hr의 수력학적 체류시간이 필요할 것으로 추정되었다. 높은 제거속도를 필요로 하는 공정에 적용시킬 경우 수력학적 체류시간을 감소시킬수록 높은 제거속도를 얻을 수 있는 것으로 나타났다.
The kinetics parameters for total ammonia nitrogen(TAN) removal in a airlift bioreactor using nitrifier consortium entrapped in polyvinyl alcohol(PVA) were evaluated by using a synthetic wastewater at 25 ℃. Influent TAN concentration were 5.0 g/m3 with hydraulic residence time(HRT) ranging from 0.05 to 1.0 hr. TAN removal rate followed Monod kinetics in overall concentration range and maximum TAN removal rate and half saturation constant were 640 g/m(3) · day and 1.667 g/m(3), respectively. For TAN concentration ranging from 0.6 to 4.8 g/m(3), the TAN removal rate can be described by half order kinetics. If this process applied to the water treatment process(influent TAN concentration: 6 g/m(3)), 0.9 hr of HRT was required for drinking water quality of TAN. To get high TAN removal rate, a low HRT was favorable.
[References]
  1. Environmental Protection Agent: "Process Design Manual for Nitrogen Control," Office of Technology Transfer, 1975
  2. Sedlak RI, "Phosphorus and Nitrogen Removal from Municipal Wastewater," Lewis Publishers, 1991
  3. Dean RB, Lund E, "Water Reuse: Problems and Solution," Academic, 1981
  4. Liao PB, Mayo RD, Aquaculture, 3, 61, 1974
  5. Bitton G, "Wastewater Microbiology," John Wiley & Sons, 88, 1994
  6. Green M, Ruskol Y, Lahav O, Tarre S, Water Res., 35, 284, 2001
  7. Na WJ, Kho K, Ong DL, Sim TS, Ho JM, Aquaculture, 139, 55, 1996
  8. Kim SK, Seo JK, Lee JS, Kong IS, Suh KH, J. Korean Fish. Soc., 30, 816, 1997
  9. Myoga H, Asano H, Nomura Y, Yoshida H, Water Sci. Technol., 23, 1117, 1991
  10. Suh KH, Kim YH, Kim BJ, HWAHAK KONGHAK, 37(3), 487, 1999
  11. Sharma B, Ahlert RC, Water Res., 11, 897, 1977
  12. Jung WC, Kim HG, Lee BY, HWAHAK KONGHAK, 24(5), 381, 1986
  13. Nijohf M, Aquaculture, 134, 49, 1995
  14. van Ginkel CG, Tramper J, Luyben KAM, Klapwijk A, Enzyme Microb. Technol., 5, 297, 1983
  15. Hashimoto S, Furukawa K, Biotechnol. Bioeng., 30, 52, 1987
  16. Chisti MY, "Airlift Bioreactors," Elsevier Applied Science, London and New York, 96, 1989
  17. Liu Y, Capdevelle B, Environ. Technol., 15, 1001, 1994
  18. Cho JK, Ph.M. Dissertation, Pukyong National Univ., Pusan, Korea, 1999
  19. APHA, AWWA and WEF: "Standard Methods for the Examination of Water and Wastewater," 18th ed., EPS Group, 1992
  20. Shuler ML, Kargi F, "Bioprocess Engineering - Basic Concepts," Prentice-Hall, New Jersey, 84, 1992
  21. Levenspiel O, "Chemical Reaction Engineering," 2nd ed., John Wiley & Sons, New York, 1972
  22. Losordo TM, Westers H, "System Carrying Capacity and Flow Estimation, Aquaculture Water Reuse System: Engineering Dasign and Management," Timmons, M.B. and Losordo, T.M. eds., Elsevier, Amsterdam, 14, 1994