Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.40, No.1, 28-33, 2002
폴리프로필렌 중공사형 막접촉기를 이용한 2-Amino-2-methyl-1-propanol(AMP) 흡수제로부터 CO2의 감압 탈거
Stripping of CO2 from Aqueous 2-Amino-2-methyl-1-propanol Solution Using Polypropylene Hollow Fiber Membrane Module by Reducing Pressure
이산화탄소가 함유된 흡수제를 소수성 미세다공질 폴리프로필렌 재질의 중공사형 막접촉기를 사용하여 감압재생하였다. 탈거실험에 사용된 흡수제는 2M 2-amino-2-methyl-1-propanol(AMP) 수용액이다. 탈거속도를 측정하여 CO2 부하량 및 흡수제 온도, 조업압력이 총괄물질전달계수에 미치는 영향을 고찰하였다. 총괄물질전달계수는 흡수제 CO2 부하량이 증가함에 따라 감소하였고 흡수제 온도가 증가함에 따라 증가하였다. 탈거속도는 조업압력 감소에 따라 증가하는 경향을 나타냈다. 탈거속도와 함께 물의 기화속도를 측정하였다. 탈거속도와 물의 기화속도의 크기를 비교할 때 탈거공정이 물의 수증기압에서 조업될 때 최적의 에너지 효율을 얻을 수 있음을 알 수 있다. 소수성 폴리프로필렌 재질 막의 총괄물질 전달계수는 막기공의 부분 젖음 현상 때문에 기상으로 채워진 막기공 모델의 예측값보다 낮게 나타났다.
CO2 loaded absorbent was regenerated by reducing pressure with hydrophobic microporous polyrpropylene hollow fiber membrane. An aqueous solution of 2M 2-amino-2-methyl-1-propanol(AMP) was used as CO2 loaded absorbent. Desorption experiments were carried out at various temperatures, pressures, and CO2 loadings. The effects of these operating conditions on overall mass transfer coefficient were investigated. The overall mass transfer coefficients increased with decreasing CO2 loading and increasing absorbent temperature. Rate of CO2 desorption increased with decreasing the pressure of the shell side. Rates of water vaporization were also obtained. The comparison of water vaporization rate with CO2 desorption rate shows that the process is operated most energy-effectively at the vapor pressure of water. The determined overall mass transfer coefficients were much lower than those theoretically calculated for completely non-wetted pore for aqueous absorbent indicating that the pores are partially wetted.
[References]
  1. Kohl AL, Riesenfeld FC, "Gas Purification," 4th ed., Gulf Publishing Co., Houston, TX, 1985
  2. Meisen A, Shuai XS, Energy Conv. Manag., 38, S37, 1997
  3. Qi Z, Cussler EL, J. Membr. Sci., 23, 321, 1985
  4. Ho WSW, Sirkar KK, "Membrane Handbook," van Nostrand Reinhold, New York, 1992
  5. Yang MC, Cussler EL, AIChE J., 32, 1910, 1986
  6. Matsumoto H, Kitamura H, Kamata T, Kag. Kog. Ronbunshu, 18, 804, 1992
  7. Nishikawa N, Ishibashi M, Ohta H, Akutsu N, Matsumoto H, Kamata T, Kitamura H, Energy Conv. Manag., 36, 415, 1995
  8. Feron PHM, Jansen AE, Energy Conv. Manag., 38, L93, 1997
  9. Feron PHM, Jansen AE, Energy Conv. Manag., 36, 411, 1995
  10. Feron PHM, Jansen AE, Klaassen R, Energy Conv. Manag., 33, 393, 1992
  11. Mahmud H, Kumar A, Narbaitz RM, Matsuura T, J. Membr. Sci., 179(1-2), 29, 2000
  12. Bhaumik S, Majumdar S, Sirkar KK, AIChE J., 42(2), 409, 1996
  13. Kreulen H, Smolders Ca, Versteeg GF, van Swaaij WPM, J. Membr. Sci., 78, 197, 1993
  14. Dankwerts PV, "Gas-Liquid Reactions," McGraw-Hill, New York, 1970
  15. Rangwala HA, J. Membr. Sci., 112(2), 229, 1996
  16. Seo DJ, Hong WH, J. Chem. Eng. Data, 41(2), 258, 1996
  17. Nii S, Iwata Y, Takahashi K, Takeuchi H, J. Chem. Eng. Jpn., 28(2), 148, 1995
  18. Xu S, Otto FD, Mather AE, J. Chem. Eng. Data, 36, 71, 1991