Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.6, 846-851, 1993
Fructosyltransferase와 Glucose Isomerase 혼합효소계를 이용한 프락토 올리고당의 생산
Production of Fructo-oligosaccharides by the Mixed-enzyme System of Fructosyltransferase and Glucose Isomerase
프락토 올리고당 생산 효소인 fructosyltransferase와 glucose isomerase와의 혼합효소계를 이용하여 새로운 조성의 프락토 올리고당 생산을 검토하였다. Fructosyltransferase의 효소화학적 특성인 glucose 저해현상을 glu-cose isomerase에 의해 낮추어 주었음에도 불구하고 프락토 올리고당의 전화률을 크게 증가시킬 수 없었다. 이 현상을 설명하기 위한 수학적 모델을 제안하고 실험을 통해 확인한 결과, fructosyltransferase 단일효소계와 비교할 때 혼합효소계의 경우 여러 가지 기질에 대한 동력학적 상수(Km, Ki)의 값이 현저하게 달라짐을 알 수 있었다. Glucose isomerase에 의해 생산된 fructose 는 fructosyltransferase에 의해 전이되지 않아 프락토 올리고당의 농도를 증가시켜 주지 못하는 것으로 보아 프락토 올리고당의 생산반응을 fructosyltransferase의 selftrans-fer 반응에 의해서만 생산된다는 결론을 얻었다.
The production of fructo-oligosaccharides having new composition was investigated using the mixed-enzyme system of fructosyltransferase and glucose isomerase. Despite of decrease in glucose concentration which acts as an inhibitor of fructosyltransferase during the production of fructo-oligosaccharides, the concentration of fructo-oligosaccharides was not high due to the altered kinetic parameters in the mixed-enzyme system was proposed and compared with the experimental results, which showed good agreement with experimental data. Surpris-ingly, the Km values and inhibition constant of glucose(KiG) for fructosyltransferase in the mixed-enzyme system were different from those of fructosyltransferase alone. The fructose isomerized from glucose by glucose isomerase did not act as a sucrose acceptor, which meant the isomerized fructose did not play a part in the production of fructo-oligosaccharides.
[References]
  1. 편집부: Food Chemicals(Japan), Oct., 10, 1989
  2. 편집부: 식품과 개발(일본), 26(10), 23, 1990
  3. Yun JW, Jung KH, Oh JW, Lee JH, Appl. Biochem. Biotechnol., 24-25, 299, 1990
  4. Hidaka H, Hirayama M, SumiM, Agric. Biol. Chem., 52, 1181, 1988
  5. Hayashi S, Nonokuchi M, Imada K, Ueno H, J. Ind. Microbiol., 5, 395, 1990
  6. Kohomoto T, Tsuji K, Kaneko T, Shiota M, Fukui F, Takaku H, Nakagawa Y, Ichikawa T, Kabayashi S, Biosci. Biotech. Biochem., 56(6), 937, 1992
  7. Jung KH, Lim JY, Yoo SJ, Lee JH, Yoo MY, Biotechnol. Lett., 9, 703, 1987
  8. Yun JW, Jung KH, Jeon YJ, Lee JH, J. Microbiol. Biotechnol., 2(2), 98, 1992
  9. vanBalken JAM, vanDooren JGM, vandenTweel WJJ, Kamphuis J, Meijer EM, Appl. Microbiol. Biotechnol., 35, 216, 1991
  10. Jung KH, Yun JW, Kang KR, Lim JY, Lee JH, Enzyme Microb. Technol., 11, 491, 1989
  11. Yun JW, Jeon YJ, Lee MG, Song SK, 한국생물공학회지, 8(3), 266, 1993
  12. Yun JW, Song SK, Biotechnol. Lett., 15(6), 573, 1993
  13. Gupta AK, Bhatia IS, Phytochemistry, 19, 2557, 1980
  14. Takasaki Y, Agric. Biol. Chem., 31(3), 309, 1967
  15. Hemmingsen SH, Applied Biotechnology and Bioengineering Vol. 2, p. 157, Academic Press Inc., New York, 1979
  16. Fujita K, Hara K, Hashimoto H, Kitahata S, Agric. Biol. Chem., 54(10), 2655, 1990