Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.6, 788-795, 1993
효모 고정화 캡슐을 이용한 에탄올 생산
Ethanol Production Using Membrane-Encapsulated Yeast
미생물의 고농도 고정화법으로서 고정화 bead 대신 고정화 캡슐을 사용하였다. 캡슐은 bead에 비해 내부공간이 넓으므로 미생물의 캡슐당 고정화 배양공간이 넓은 장점이 있다. 본 연구에서는 yeast를 실험균주로 선택하였다. 캡슐제조시에 surfactant를 첨가하여 막을 통한 가스의 flux를 약 두배 정도 증가시킬 수 있었고 에탄올 생산시의 이산화탄소 발생으로 막이 파괴되는 것을 방지할 수 잇었다. Yeast를 캡슐내부에 고정화시킨 후 배양과정에서 성장배지에 calcium chloride를 미량 첨가하여 막의 swelling을 막을 수 있었고 캡슐내부의 yeast 건조중량 밀도는 약 310g/l에 달하였다. Yeast 고정화 bead의 경우와 비교하여 캡슐막의 yeast 격리효과는 거의 완벽하였다. 연속공정에서 고정화 캡슐을 사용하는 경우에 에탄올 생산성은 4.75g/hㆍl 이고 고정화 bead를 사용하는 경우는 4.71g/hㆍl 로 거의 비슷하였다. Surfactant를 첨가하지 않은 yeast 고정화 calcium alginate 캡슐은 성장배지내의 성장단계에서 캡슐내부에 yeast가 건조중량 밀도로 약 74g/l정도 차도록 성장시킨 다음 생산배지내에서 생산을 하게 되면 캡슐막이 elasto-plastic deformation에 의한 팽창ㆍ수축을 하여 막을 통한 물질전달은 약 20배에 달하게 되며 막의 파괴는 없었다.
An encapsulation method in which yeast cells were immobilized in calcium alginate capsule was investigated. The calcium alginate capsule could burst because of carbon dioxide gas produced during ethanol fermentation. A new method for preparing calcium alginate microcapsules was developed and it was observed that gas transfer was further facilitated about two times as fast as in conventional capsule membrane. By adding a small amount of calcium chloride in the medium it was possible to control the swelling of the microcapsules and increase the dry cell density to 310g/l. The rate of ethanol production of the system was nearly the same as that of bead system in continuous operation. For the calcium alginate capsule without adding surfactant, it was possible to increase the gas transfer rate about 20 times by lowering the dry cell density of the capsule to about 74g/l. This was possible because of thin wall thickness and expanded surface area of the capsule.
[References]
  1. Black GM, Webb C, Mattews TM, Atkinson B, Biotechnol. Bioeng., 26, 134, 1984
  2. Van Wezel AL, Nature, 216, 64, 1967
  3. Kierstan M, Bucke C, Biotechnol. Bioeng., 19, 387, 1977
  4. Cheetham PSJ, Blunt KW, Bucke C, Biotechnol. Bioeng., 21, 2155, 1979
  5. Ku K, Kuo MJ, Delente J, Wildi BS, Feder J, Biotechnol. Bioeng., 23, 79, 1981
  6. Lim F, Sun AM, Science, 210, 908, 1980
  7. Gharapetian H, Davies NA, Sun AM, Biotechnol. Bioeng., 28, 1595, 1986
  8. Yoshioka T, Hirano R, Shioya T, Kako M, Biotechnol. Bioeng., 35, 66, 1990
  9. Sefton MV, Dawson RM, Broughton RL, Blysniuk J, Sugamori ME, Biotechnol. Bioeng., 29, 1135, 1987
  10. Kim JH, Oh DK, Park SK, Park YH, Wallis DA, Biotechnol. Bioeng., 28, 1838, 1986
  11. Kurosawa H, Nomura N, Tanaka H, Biotechnol. Bioeng., 33, 716, 1989
  12. Lee CW, Chang HN, Biotechnol. Bioeng., 29, 1105, 1987
  13. Park JK, Bioprocess Engineering Research Center, Final Report, 1993
  14. Park JK, Chang HN, Park JH, Earmme YY, Ind. Eng. Chem. Fundam., 25, 189, 1986