Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.6, 707-714, 1993
국산 왕겨를 이용한 활성탄 제조 및 흡착특성
Preparation and Adsorption Characteristics of Activated Carbon from Korean Rice Hull
국산 왕겨를 이용하여 활성탄 제조에 관한 연구를 수행하였다. 왕겨를 탄화하여 얻은 char는 탄화온도가 증가함에 따라 비표면적이 증가하였으며, char를 끊는 물로 세척하거나 가성소다 용액을 이용하여 왕겨 char로부터 실리카를 용출시켜 비표면적을 증대시킬 수 있었다. 왕겨 char로부터 실리카를 용출시킨 경우, 비표면적과 제거된 실리카의 양은 NaOH의 첨가가 단계적으로 이루어질 때가 증가하였다. 또한 왕겨로부터 인산을 활성화제로 사용하여 활성탄을 제조하고, 제조조건에 따른 비표면적과 흡착능을 검토하였다. 회분식 흡착실험을 통하여 페놀을 흡착시킨 결과, 활성탄의 흡착능은 비표면적이 클수록 증가하였으며, 페놀의 흡착량과 평형농도 사이에는 freundlich의 흡착평형관계식이 성립하였다. 일본 Calgon F300 활성탄과 비교하여 페놀에 대한 흡착능을 시험한 결과 인산으로 활성화하여 제조한 활성탄의 흡착성능이 다소 우수하였다.
A study was conducted to make activated carbon adsorbents using local rice hull ashes. As the carbonization temperature of the rice hull was increased, the specific surface area of the char increased steadily. The specific surface area of the char was enhanced either by boiling water washing, or by silica leaching using sodium hydroxide. When sodium hydroxide was used to leach out silica from the char, the specific surface area and the amount of silica removed increased most when the sodium hydroxide leaching was conducted in several stages. Activated carbon was also prepared from the rice hull by chemical activation method using phosphoric acid. The adsorption characteristics of phenol onto the activated carbons prepared were measured in a batch reactor. These results showed that as the specific surface areas of the activated carbons increased, better adsorptivities to phenol were obtained. The relationship between the amount of phenol adsorbed and equilibrium concentration was found to be well represented by the Freundlich isotherm. The adsorption capacity of the activated carbon prepared through chemical activation method was slightly better than that of the commercial product of Calgon F300.
[References]
  1. Houston DF, "Rice Hulls," ; in Rice Chemistry and Technology, American Association of Cereal Chemistst, Inc., St Paul, MN, 301, 1972
  2. Lee JS, Master Thesis, Korea Advanced Institute of Science, Korea, 1975
  3. Kang SW, Master Thesis, Korea Advanced Institute of Science, Korea, 1978
  4. Mah TI, Master Thesis, University of Utah, USA, 1972
  5. Bajpai PK, Rao MS, Gokhale KVGK, Ind. Eng. Chem. Prod. Res. Dev., 20, 721, 1981
  6. 최인호, 이철호, "고무충진제에 관한 연구," 한국화학연구소, 1981
  7. 김지동, 최익수, "왕겨로부터 가연성가스 제조에 고나한 실험연구," 한국동력자원연구소, KE-8010, 1980
  8. Sasaki M, Kazuo T, Kanakawa Kogakubu Kenkyu Hokoku, 8, 44, 1970
  9. Jain KD, Sharma MK, J. Ind. Chem. Soc., 12, 1150, 1971
  10. Shirai Y, Yoshihiro B, Ichikawa T, Hirohiko, 24, 645, 1970
  11. Shinomiya F, Takeshi S, Masui K, Yoshio, 33, 979, 1975
  12. Kim BU, J. KIChE, 5, 77, 1967
  13. Ahn GH, Master Thesis, Korea University, Korea, 1981
  14. Proctor A, Palaniappan S, J. Am. Oil Chem. Soc., 66, 1618, 1989
  15. Benke D, Wainwright Ms, Navratil JD, Chemeca '90: "Processing Pacific Resources," 1032, 1990
  16. Juhola AJ, J. Am. Chem. Soc., 74, 64, 1952
  17. Lee BS, Ha KS, Kim JB, HWAHAK KONGHAK, 26(6), 583, 1988