Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.6, 683-692, 1993
바나듐계 결정질 유리의 촉매적 특성과 C5 탄화수소 부분산화반응에 대한 활성 연구
A Study of the Catalytic Characteristics and the Activities of C5 Hydrocarbon Partial Oxidations in Vanadium Based Crystalline Glasses
바나듐계 결정질 유리를 제조하여 표면적 측정, X-선 회절분석, 화학분석을 시행하였고 확인 반응으로서 촉매산반응 등을 통하여 촉매로서의 특성을 연구하였다. 바나듐계 유리는 V2O5와 P2O5 및 B2O3를 조성과 열처리 조건을 변화시키며 제조하였다. 제조된 유리는 산으로 에칭하고 건조후 소성하였다. 촉매의 비표면적은 이성분계의 경우 1m2/g, 삼성분계의 경우 5-10m2/g이었으며, V4+/V5의 비는 이성분계의 경우 V2O5 의 첨가비율이 증가함에 따라 증가하였다. X-선 회절분석은 제조된 모유리는 비정질이며 열처리함에 따라 결정질로 변화됨을 보여주었다. 제조된 촉매에 대하여 메틸사이클로펜탄, 사이클로펜탄, 사이클로펜타다이엔을 촉매반응시켜 촉매의 활성과 무수말레산의 선택도를 살펴보았다. 이성분계와 삼성분계 촉매의 구조적 화학적 성질의 상이성에 기인하여 반응 역시 다른 결과를 보였다. 이성분계의 경우 무수말레산의 수득율이 10% 미만인 반면 삼성분계의 경우 사이클로펜타다이엔의 경우 최고 50%의 수득율을 보였다.
Vanadium crystalline glasses were prepared and investigated through surface area measurement, X-ray diffraction, chemical analysis and catalytic oxidation as a probe reaction. The vanadium based glasses were prepared by fusing V2O5, P2O5 and B2O3 mixtures with different compositions and annealling conditions. The prepared glasses were leached in acidic solution, dried and calcined sequentially. From the results of surface area analysis and chemical analysis of V4+/V5+ ratio, it was found that the glasses were porous mate-rials of which surface area is about 1m2/g in binary system and 5-10m2/g in ternary system. The V4+/V5+ ratio increased with P2O5 ratio for V2O5-P2O5 ginary glass. X-ray diffraction analysis showed that the fresh glass was amorphous but it changed to crystalline as it was annealled. Through the catalytic oxidation of methylcyclopentane, cyclopentane and cyclopentadiene, catalytic activity and selectivity of maleic-anhydride on vanadium based glasses were studied. As to geometric and chemical defference between V2O5-P2O5 and V2O5-P2O5-B2O5-B2O3 systems, the reaction showed also different results. Binary catalysts had less than 10% yield of maleic anhydride, but ternary catalysts had maximum 50% yield of maleic anhydride for cyclopentadiene.
[References]
  1. Jun KW, Chang YK, Jung SJ, Lee KW, Korean J. Chem. Eng., 3(2), 135, 1986
  2. Lee IW, Tae BS, Hong SI, HWAHAK KONGHAK, 26(6), 562, 1988
  3. Honicke D, Appl. Catal., 2, 177, 1982
  4. Weiss JM, Down CR, U.S. Patent, 1318631
  5. Weiss JM, Down CR, U.S. Patent, 1318632
  6. Weiss JM, Down CR, U.S. Patent, 1318633
  7. Laporte: U.K. Patent, 1,205,111, 1968
  8. Princeton Chemical Research Inc.: U.S. Patent, 1,205,111, 1968
  9. Standard Oil(Ohio): U.S. Patent, 2,954,385, 1983
  10. Conover C, (Monsanto Co.), U.S. Patent, 2,079,490, 1937
  11. Nagemeguri N, Matsumoto M, Japan Patent, 5710665, 1957
  12. Yamammotoh A, Sekita Gakkai Shi, 15(11), 932, 1972
  13. Fujiki T, Japan Patent, 7440207
  14. Ikawa T, Japan Patent, 7429165
  15. Limb Y, Davis R, J. Am. Ceram. Soc., 62, 402, 1979
  16. Denton EP, Rawson H, Nature, 173, 1030, 1954
  17. Baynton PL, Rawson H, Stanworth JE, J. Electrochem. Soc., 104, 227, 1957
  18. Munakata M, Solid State Electron., 1, 159, 1960
  19. McMillan PW, Advances in Glass Technology, vol. 1, Plenum Press, New York, 1962
  20. Tray HJ, Stevels JM, Phys. Chem. Glasses, 4, 243, 1963
  21. Mackenzie JD, "Modern Aspects of the Vitreous State," Butterworth, London, 1960
  22. Hansen KW, J. Electrochem. Soc., 12, 994, 1965
  23. Linsley GS, Owen AE, Hayatte FM, J. Non-Cryst. Solids, 4, 208, 1960
  24. Alder D, "Amorphous Semiconductors," CRC Press, Cleveland, 1971
  25. Allersma T, Hakim R, Kennedy TN, Mackenzie JD, J. Chem. Phys., 46(1), 154, 1966
  26. Allersma T, Mackenzie JD, J. Chem. Phys., 47(4), 1406, 1967
  27. Mars P, vanKrevelen DW, Chem. Eng. Sci., 3, 41, 1954
  28. 김병호, "결정화 유리," 민음사, 1984