Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.6, 658-666, 1993
티타늄 함유 모더나이트의 제조 및 벤젠, 포화탄화수소와 과산화수소의 반응에 대한 그들의 촉매적 특성
Preparation of Titanium Modified Mordenite and its Catalytic Properties in the Reaction of Benzene or Saturated Hydrocarbons with H2O2
수열합성법 및 탈알루미늄 처리 이후 고온에서 TiCl4증기와의 반응처리범으로 티타늄이 함유된 모더나이트를 조제하였다. X선회절법, FT-IR 및 29Si MAS NMR 분석을 수행하여 티타늄의 모더나이트 격자구조내로의 도입을 검토하였다. 또한 벤젠 수산화반응과 n-hexane 산화반응을 티타늄 함유 모더나이트의 특성검토를 위한 시험반응으로 이용하였다. 순수한 티타니아와 SiO2 및 H형 모더나이트상에 담지된 TiO2는 이들 반응에 대하여 전혀 활성을 나타내지 못하였으나, 티타늄 함유 모더나이트는 두 반응에 대하여 공히 활성을 보였다. 이들 촉매의 활성은 사용한 용매의 종류에 의해 크게 영향을 받았으며, 보다 높은 벤젠 및 n-hexane 전환율은 메탄올을 용매로 사용한 경우에 얻어졌다.
Titanium modified mordenites have been prepared hydrothermally or by subsequent reaction with titaniumtetrachloride vapour at elevated temperature after dalumination of H-mordenite. Incorporation of titanium into the mordenite type framework has been demonstrated by XRD, FT-IR, 29Si MAS NMR analysis, and the catalytic benzene hydroxylation or n-hexane oxidation was used for checking the properties of Ti modified mordenite. Pure titania powder and TiO2 supported on SiO2 or H-mordenite showed no catalyutic activity at all for these reactions, but titanium modified mordenite had activities in both reactions. the catalytic activity strongly depended on the kind of solvents, and the higher conversion of benzene or n-hexane was obtained with methanol solvent.
[References]
  1. Szostak R, "Molecular Sieves: Principles of Synthesis and Identification," Van Nostrand, New York, 1989
  2. Kim JH, Namba S, Yashima T, "Zeolites as Catalysts, Sorbents and Detergent Builders," Elsevier, Amsterdam, 1989
  3. Kim JH, Namba S, Yashima T, Bull. Chem. Soc. Jpn., 61, 1051, 1988
  4. 김건중, 이준배, 안화승, 조병린, 권이묵, 인하대 산업과학기술연구소 논문집, 17, 169, 1989
  5. Kim JS, Seo G, Kim JH, Park NC, HWAHAK KONGHAK, 27(3), 260, 1989
  6. HONG SB, WOO SI, UH YS, Korean J. Chem. Eng., 6(4), 357, 1989
  7. Taramasso M, Notari B, U.S. Patent, 4,410,501, 1983
  8. Esposito A, Neri C, Buonomo F, Eur. Patent, 0102655, 1984
  9. Roffia P, Padovan M, Moretti E, DeAlberti G, Eur. Patent, 0208311, 1987
  10. Neri C, Anfossi B, Esposito A, Buonomo F, Eur. Patent, 0100119, 1984
  11. Neri C, Buonomo F, Eur. Patent, 0100117, 1984
  12. Thomas JM, Klinowski J, Adv. Catal., 33, 199, 1985
  13. Thangaraj A, Kumar R, Ratnasamy P, Appl. Catal., 57, L1, 1990
  14. Kraushaar B, vanHooff JHC, Catal. Lett., 2, 43, 1989
  15. Clerici MG, Appl. Catal., 68, 249, 1991
  16. Notari B, "Structure-Activity and Reactivity Relationships in Heterogeneous Cataysis," Elsevier, Amsterdam, 1991
  17. Kraushaar B, vanHooff JHC, Catal. Lett., 1, 81, 1988
  18. Dessau RM, Kerr GT, Zeolites, 4, 315, 1984
  19. Kim GJ, Jung SJ, Kim TJ, Kwon LM, HWAHAK KONGHAK, 25(5), 477, 1987
  20. Perego G, Bellussi G, Corus C, Taramasso M, Buonomo F, Esposito A, "New Developments in Zeolite Science and Technology," Kodansha and Elsevier, Tokyo, 1986
  21. Reddy JS, Kumar R, Ratnasamy P, Appl. Catal., 58, L1, 1990
  22. Thangaraj A, Kumar R, Mirajkar SP, Ratnasamy P, J. Catal., 130, 1, 1991
  23. Thangaraj A, Kumar R, Sivasanker S, Zeolites, 12, 135, 1992
  24. Olah GA, Paker DG, Yoneda N, Angew. Chem.-Int. Edit., 17, 909, 1978
  25. Tatsumi T, Nakamura M, Tominaga H, "Catalytic Science and Technology," Kodansha, Tokyo, vol. 1, 213, 1990