Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.6, 628-636, 1993
기-액병류하향 충전탑에서 액체의 흐름과 축방향혼합특성
Flow and Axial Mixing Characteristics of Liquid Phase in a Packed Column with Gas-Liquid Cocurrent Downflow
기-액흐름이 병류하향으로 흐르는 충전탑에서 액체의 흐름과 축방향혼합특성을 연구하였다. 실험에서 측정된 액체의 체류시간분포로부터 제시된 3가지 혼합모델, 즉 축방향분산모델(ADM), 정체지역이 존재하는 플러그흐름모델(PFM)과 정체지역이 존재하는 축방향분산모델(DSM)을 사용하여 혼합모델의 매개변수들을 산출하였다. 그리고 조업조건에 따른 각 혼합모델의 적용성과 매개변수들을 해석하였다. 실험결과, 액체의 흐름과 혼합특성은 모델 DSM으로 잘 해석할 수 있었으며 액체의 Reynolds수(ReL)가 약 40이상에서는 유동지역의 흐름특성이 프러그흐름에 근접하였다. 또한 곡선맞춤법으로 산출된 정체지역의 분율은 모델 PFM에서보다 모델 DSM에서 작았으며 액체속도가 증가할수록 정체지역의 분율은 감소하였으나 유동지역과 정체지역간의 물질전달계수는 증가하였다. 그기고 ReL>40에서 모델 ADM과 모델 DSM으로 산출된 유동지역에서의 Peclet수는 충전물인 유리구슬의 직경과 액체속도가 증가할수록 증가하였다. 이 때 조업조건에 따른 이들 매개변수에 대한 상관식을 얻었다.
For downward cocurrent gas-liquid flow in a packed column, the flow and axial mixing character-istics of liquid phase were investigated. Based on experimental residence time distributions of liquid phase, parameters of mixing models were evaluated with three proposed mixing models : The axial dispersion model(ADM), the plug flow model with stagnant zone(PFM), and the axial dispersion model with stagnant zone(DSM). Accordingly, the applicability and parameters of each mixing model were analyzed for various opera-ting conditions. we found that the flow and mixing characteristics of liquid phase could be analyzed well by DSM, and also that the flow characteristics in the dynamic zone tended to access the plug flow at higher liquid Reynolds number(ReL). Also, the fraction of stagnant zone estimated by the curve fitting method for the case of DSM was less than that of PFM. As liquid velocity increased, the fraction of the stagnant zone was decreased while the mass transfer coefficient vetween the dynamic and the stagnant zone was increased. In the dynamic zone, the calculated Peclet numbers in both ADM and DSM were increased with increasing the diameter of glass bead as a packing material and increasing liquid velocity at ReL>40. In these conditions, correlations of these parameters were obtained for various operating conditions.
[References]
  1. Panvelkar SV, Tierney JW, Shah YT, Chem. Eng. Sci., 37, 1582, 1982
  2. Furzer IA, Ho GE, AIChE J., 13, 614, 1967
  3. Mata AR, Smith JM, Chem. Eng. J., 22, 229, 1981
  4. Sylvester ND, Pitayagulsarn P, Ind. Eng. Chem. Process Des. Dev., 14, 421, 1975
  5. Shah YT, "Gas-Liquid-Solid Reactor Design," McGraw-Hill, New York, 1979
  6. Hofmann H, Int. Chem. Eng., 17, 19, 1977
  7. Herskowitz M, Smith JM, AIChE J., 29, 1, 1983
  8. Gianetto A, Silveston PL, "Multiphase Chemical Reactors: Theory, Design, Scale-up," Hemisphere Pub. Co., New York, 1986
  9. Satterfield CN, AIChE J., 21, 209, 1975
  10. Fukushima S, Kusaka K, J. Chem. Eng. Jpn., 10, 461, 1977
  11. Charpentier JC, Favier M, AIChE J., 21, 1213, 1975
  12. Schwartz JG, Weger E, Dudukovic MP, AIChE J., 22, 953, 1976
  13. Goenaga A, Smith JM, McCoy BJ, AIChE J., 35, 159, 1989
  14. Montagna AA, Shah YT, Ind. Eng. Chem. Process Des. Dev., 14, 479, 1975
  15. Crine M, L'Homme G, "Encyclopedia of Fluid Mechanics: Vol. 6-Complex Flow Phenomena and Modeling," Chap. 9, edited by Cheremisinoff, N.P., Gulf Pub. Co., Houston, 1987
  16. Hochman JM, Effron E, Ind. Eng. Chem. Process Des. Dev., 8, 63, 1969
  17. Yang XL, Euzen JP, Wild G, Chem. Eng. Sci., 45, 3317, 1990
  18. Skomorokov VB, Kirillov VA, Chem. Eng. J., 33, 169, 1986
  19. Sicardi S, Hofmann H, Chem. Eng. J., 20, 251, 1980
  20. Bennett A, Goodridge F, Trans. Inst. Chem. Eng., 48, 232, 1970
  21. Sicardi S, Baldi G, Specchia V, Chem. Eng. Sci., 36, 1775, 1980
  22. Cho JH, "Flow and Mixing Characteristics of Liquid Phase in a Packed Column with Gas-Liquid Cocurrent Upflow and Downflow," Ph.D. Thesis, Myoung Ji University, 1992
  23. VanSwaaij WPM, Charpentier JC, Villermaux J, Chem. Eng. Sci., 24, 1083, 1969
  24. Matsuura A, Akehata T, Shirai T, J. Chem. Eng. Jpn., 9, 294, 1976
  25. Michell RW, Furzer IA, Chem. Eng. J., 4, 53, 1972
  26. Kubo K, Aratani T, Mishima A, Int. Chem. Eng., 23, 85, 1983
  27. Stiegel GJ, Shah YT, Can. J. Chem. Eng., 55, 3, 1977