Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.5, 513-520, 1993
수소기체에 함유된 O2, CO 및 탄화수소 기체에 의한 LaNi5의 불활성화 및 재생
Deactivation of LaNi5 by O2, CO and Hydrocarbon Gases Contained in Hydrogen Gas and Its Regeneration
수소기체에 함유된 O2, CO 및 탄화수소기체에 의한 LaNi5의 불활성화와 활성이 저하된 LaNi5의 재생성을 연구하였다. 순수한 LaNi5와 마이크로캡슐화된 LaNi5의 압력-농도-온도 곡선은 거의 같음을 보였다. 혼합기체에서 마이크로캡슐화된 LaNi5의 수소화반응속도는 순수한 LaNi5의 속도보다 높았다. 산소를 함유한 수소기체에서는 시료와 종류와는 상관없이 반응 cycle에 따라 LaNi5의 반응분율이 거의 100%로 일정히 유지되었다. 일산화탄소를 함유한 수소기체에서는 시료의 종류에 따라 다르기는 하나 반응 cycle이 증가함에 따라 LaNi5의 반응분율이 감소하였다. 활성이 저하된 LaNi5는 423K에서 CO와 수소가 반응하여 CH4가 생성되어 재생되었으며, 재생된 LaNi5는 90% 이상의 높은 반응분율을 보였다.
The deactivation of LaNi5 by O2, CO and hydrocarbon gases contained in hydrogen gas, and the regeneration of the deactivated LaNi5 were studied. The pressure-concentration- temperature curves for pure and microencapsulated LaNi5 were shown to be almost the same. In the mixed gases, the hydrogenating reaction rates of microencapsulated LaNi5 were higher than of pure LaNi5. Independent of the sample, in the hydrogen gas containing oxygen, the reacted fraction of LaNi5 maintained constant at nearly 100%. In the hydrogen gas containing carbon monoxide, on the contrary, the reacted fractions decreased with the increase of the reaction cycle although the magnitudes of them were slightly different according to the samples. The deactivated LaNi5 was regenerated by the formation of CH4 from the reaction of CO and H2 at 423K, and the regenerated LaNi5 showed a fraction higher than 90%.
[References]
  1. Thibault JJ, Proc. 2nd World Hydrogen Energy Conf., Zurich, Switzerland, August, 21, 1987
  2. Nahm KS, Jung WB, Lee WY, Int. J. Hydrog. Energy, 15(9), 635, 1990
  3. Jung WB, Nahm KS, Lee WY, Int. J. Hydrog. Energy, 15(9), 641, 1990
  4. Sandrock GD, Huston EL, ChemTech, 11, 754, 1981
  5. Wenzl H, Int. Metals Rev., 27, 140, 1982
  6. Osumi Y, Chem. Economy Eng. Rev., 16(5), 12, 1984
  7. Santangelo JG, Chen GT, ChemTech, 621, 1983
  8. Relly JJ, Wiswall RH, U.S. Patent, 3,793,435
  9. Eisenberg FG, Goodell PD, J. Less-Com. Met., 89, 55, 1983
  10. Sun YK, Nahm KS, Lee WY, J. Korean Hydrogen Energy, 1(1), 15, 1989
  11. Ishikawa H, Ogro K, Kato A, Suzuki H, Ishh E, J. Less-Com. Met., 107, 105, 1985
  12. Ishikawa H, Ogro K, Kato A, Suzuki H, Ishh E, J. Less-Com. Met., 120, 123, 1986
  13. Selvam P, Viswanathan B, Srinivasan V, Int. J. Hydrog. Energy, 15(2), 133, 1990
  14. Selvam P, Viswanathan B, Swamy CS, Srinivasan V, Int. J. Hydrog. Energy, 16(1), 23, 1991
  15. Nahm KS, Kim WY, Hong SP, Lee WY, Int. J. Hydrog. Energy, 17(5), 333, 1992
  16. vanMal HH, Buschow KHJ, Miedema AR, J. Less-Com. Met., 35, 65, 1974
  17. Ludin CE, Lynch FE, "Hydrides for Energy Storage," Pergamon Press, 395, 1978
  18. Hanson FV, Bourdart M, J. Catal., 53, 56, 1978
  19. Joyner RW, Roberts MW, Chem. Phys. Lett., 29, 447, 1974
  20. Yu XN, Schlapbach L, Int. J. Hydrog. Energy, 13(7), 429, 1988
  21. Sandrock GD, Goodell PD, J. Less-Com. Met., 104, 159, 1984
  22. Ahn HJ, Lee JY, Int. J. Hydrog. Energy, 16(2), 93, 1991
  23. Mordkovich VZ, Korostyshevsky NN, Baychtok YK, Mazus EI, Dudakova NV, Mordovin VP, Int. J. Hydrog. Energy, 15(10), 723, 1990