Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.4, 415-421, 1993
석탄가스화 반응에서의 알칼리금속 혼합염촉매의 활성화에 관한 연구
A TDS Study on the Activation of Mixed Alkali Metal Salts during Catalytic Coal Gasification
촉매를 이용한 석탄가스화 반응을 고진공장치에서의 기체흡탈착실험을 통하여 연구하였다. 실험에 사용한 탄소원으로는 무연탄인 장성탄과 유연탄인 대동탄의 촤를 사용하였으며, 촉매로는 K2CO3, Na2CO3, K2SO4, 그리고 K2SO4와 Na2CO3의 혼합염 등의 알칼리금속염을 사용하였다. 실온에서 산소를 흡착시킨 후 1000 K까지 가열하여 CO2 TDS를 얻었다. 실험결과 촉매가 담지되지 않은 시료와 K2SO4가 담지된 시료의 경우 활성의 차이가 거의 없었으며, 낮은 활성을 보였다. K2CO3가 담지된 시료와 Na2CO3가 담지된 시료의 경우에 동일하게 약 830 K 부근에서 특징적인 피크를 보이는 것이 관찰되었으며, 이는 촉매에 의해 활성화된 석탄상의 활성점에 의한 것이었다. K2SO4와 Na2CO3가 함께 담지된 시료의 경우 CO2 TDS를 반복하면 처음에는 나타나지 않던 830 K 부근의 피크가 생성되었으며, 이 때 장성탄보다 대동탄이 피크생성에 유리하였다. 따라서, 단일염촉매보다는 혼합염촉매를 사용하였을 때 우수한 활성을 보였으며, 석탄가스화 반응에는 대동탄이 유리하였다.
Catalytic coal gasification was stuided by the method of thermal desorption spectroscopy(TDS) under high vacuum condition. Charcoals of Jangsung coal(anthracite) and Tatong coal(bituminous coal) were used as carbonaceous material, and alkali metal salts such as K2CO3, Na2CO3, K2SO4, and mixed salt of K2SO4 and Na2CO3 as catalysts. CO2 TDS pattern was obtained by heating sample to 1000 K after O2 adsorption at room temperature. The activities of catalyst-unloaded sample and K2SO4-loaded sample were almost same, but poor. Samples loaded with K2CO3 and Na2CO3 showed the same characteristic peak at about 830 K, which was caused by active sites on the coal activated by catalyst. In case of the sample loaded with both K2SO4 and Na2CO3, the peak of 830 K was not shown in the first CO2 TDS spectrum, but it appeared after repeating CO2 TDS several times. Tatong coal was preferred to Jangsung coal in forming the active sites. Therefore, the mixed salt catalyst showed enhanced activity comparing with its constituent single salt, and Tatong coal was recommended for coal gasification.
[References]
  1. Wen WY, Catal. Rev.-Sci. Eng., 22, 1, 1980
  2. Lang RJ, Fuel, 65, 1324, 1986
  3. Mckee DW, Spiro CL, Kosky PG, Lamby EJ, Fuel, 64, 805, 1985
  4. Verra MJ, Bell AT, Fuel, 57, 194, 1978
  5. Yuh SJ, Wolf EE, Fuel, 62, 252, 1983
  6. Lang RJ, Pabst JK, U.S. Patent, 4,318,712, 1982
  7. Choi KH, Lee WY, Rhee HK, Moon SH, Lee HI, Korean J. Chem. Eng., 10(2), 78, 1993
  8. Choi YK, Moon SH, Lee HI, Lee WY, Rhee HK, HWAHAK KONGHAK, 30(4), 415, 1992
  9. Huttinger KJ, Minges R, Fuel, 65, 1112, 1986
  10. Kikuchi E, Adachi H, Tomoki T, Hirose M, Morita Y, Fuel, 62, 226, 1983
  11. Kuhn L, Plogmann H, Fuel, 62, 205, 1983
  12. Formella K, Leonhardt P, vanHeek KH, "1987 International Conference on Coal Science," Moulijin, J.A. (ed.), Elsevier, Amsterdam, The Netherlands, p. 511, 1987
  13. Wood BJ, Sancier KM, Catal. Rev.-Sci. Eng., 26, 233, 1984