Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.3, 361-368, 1993
MgCl2/2-Ethyl hexanol/Phthalic anhydride/Di-isobutyl phthalate/TiCl4 촉매에 의한 프로필렌 중합 특성 연구
A Study on Propylene Polymerization over MgCl2/2-Ethyl Hexanol/Phthalic Anhydride/Di-isobutyl Phthalate/TiCl4 Catalysts
무수염화마그네슘을 2-에틸 헥산올(EH)에 녹이고 무수프탈산(PA), 내부 전자공여체(IED)인 디이소부틸프탈산(DIBP)을 첨가하여 재침전법에 의해 고활성 고입체규칙성 마그네슘 담지형 촉매인 MgCl2/EH/PA/TiCl4/DIBP촉매를 제조하였다. 외부 전자공여체(EED)인 삼에톡시펜닐실레인(PTES)이 존재하지 않은 경우 또는 존재할 경우 각각 삼에틸알루미늄(TEA)양의 변화에 따라 상압, 슬러리상으로 프로필렌을 중합하여, 활성과 입체규칙성에 미치는 TEA, PTES의 영향을 고찰하였다. 또한 중합 온도에 따른 활성과 이소텍틱 지수(I.I.), 수소 첨가에 의한 I.I.와 분자량 변화도 고찰하였다. PTES가 존재하지 않을 때, TEA/Ti 몰비가 25에서 최대 활성값을 갖지만, PTES가 존재할 때는 그 몰비가 50 정도에서 최대 평균 활성을 가졌다. I.I. 값은, PTES가 존재하지 않을 때 TEA양의 증가에 따라 떨어지는 반면에, PTES가 존재하는 경우, TEA양이 증가해도 96% 이상으로 아주 높게 유지되었다. 온도 증가에 따른 I.I.값은 활성과 함께 50℃까지 증가하였고 60℃에서는 줄어들었다. 수소의 첨가는 활성을 증가시키고 폴리프로필렌의 분자량과 I.I.값을 감소시켰다. 촉매에 내부 전자공여체인 DIBP를 포함하지 않은 MPT촉매는 MPDT촉매의 경우처럼 외부 전자공여체인 PTES가 존재할 때 I.I.값이 존재하지 않을 경우에 비해 약간 증가시켰다. PA를 첨가하지 않은 MDT촉매도 MPDT촉매와 비교하여 연구하였다.
The highly active and stereospecific MgCl2-supported catalysts, MPDT(MgCl2/EH/PA/TiCl4/DIBP) was prepared by precipitation method from MgCl2 solution containing MgCl2, 2-ethyl hexanol(EH), and phthalic anhydride(PA). Propylene polymerizations were carried out in a slurry reactor under atmos-pheric pressure using the MPDT catalyst cocatalyzed with TEA(triethylaluminum) in the absence of phenyl triethoxy silane(PTES) and in the presence of PTES as external electron donor(EED) to study the effect of TEA and PTES concentration on the activity and stereospecificity. The effect of polymerization temperature on the isotactic index(I.I.) and the activity was studied. The influence of the hydrogen addition on the I.I. and the molecular weight was also observed. In the absence of PTES, maximum average polymerization rate(Rp, max) was obtained at the mole ration of TEA/Ti of 25. Rp, max was, however, obtained at the TEA/Ti ratin of 50 in the presence of PTES. Isotacticity decreased as the TEA/Ti molar ratio is increased in the absence of PTES. In contrast, I.I. was higher than 96% in the presence of PTES in spite of increasing the TEA/Ti molar ratio. The increase of temperature above 50℃ decreased the isotactic index as well sa the activity. The addition of hydrogen enhanced the activity and decreased the isotactic index(I.I.) of the polypropylene to a small extent. MPT(MgCl2/EH/PA/TiCl4) catalyst without DIBP slightly increased isotactic index in the presence of PTES. The characteristics of MDT(MgCl2/EH/TiCl4/DIBP) catalyst without PA were also compared with those of MPDT catalyst.
[References]
  1. Barbe PC, Cechin G, Noristi L, Adv. Polym. Sci., 81, 1, 1986
  2. Pino P, Mulhaupt R, Angew. Chem.-Int. Edit., 19, 857, 1980
  3. Pino P, Mulhaupt R, "Transition Metal Catalyzed Polymerization," ed. by Quirk, R.P., MMI Press Symp., Series Part A, Cambridge, Univ. Press, p. 1, 1988
  4. Kim I, Choi HK, Han TK, Woo SI, J. Polym. Sci. A: Polym. Chem., 30, 2263, 1992
  5. Terano M, Kataoka T, Keii T, Makromol. Chem., 188, 1477, 1987
  6. Kim I, Woo SI, Polym.(Korea), 15(4), 417, 1991
  7. Kim I, Woo SI, Polym.(Korea), 15(6), 687, 1991
  8. Kim I, Woo SI, Polym.(Korea), 16(5), 570, 1992
  9. Chien JCW, Hu Y, J. Polym. Sci. A: Polym. Chem., 26, 2003, 1988
  10. Chien JCW, Hu Y, J. Polym. Sci. A: Polym. Chem., 26, 2973, 1988
  11. Chien JCW, Hu Y, J. Polym. Sci. A: Polym. Chem., 27, 897, 1989
  12. Chien JCW, Hu Y, J. Polym. Sci. A: Polym. Chem., 28, 273, 1990
  13. Soga K, Shiono T, "Transition Metal Catalyzed Polymerization," ed. by Quirk, R.P. et. al., Cambridge Univ. Press, p. 266, 1988
  14. Spitz R, Masson P, Bobichon C, Guyot A, Makromol. Chem., 190, 717, 1989
  15. Spitz R, Masson P, Bobichon C, Guyot A, Makromol. Chem., 189, 1043, 1988
  16. Spitz R, Robichon C, Guyot A, Duranel L, J. Mol. Catal., 56, 156, 1989
  17. Kloka M, Kashiwa N, European Patent, 282,341, 1988
  18. Kloka M, Kashiwa N, Chem. Abstr., 110, 173953, 1989
  19. Kissin YV, "Isospecific Polymerization of Olefins," Springer-Verlag, New York, p. 2, 1985
  20. Yermakov YI, Butatov GD, Zakharov YI, Makromol. Chem., 175, 3035, 1974
  21. Chien JCW, Hsieh JTT, J. Polym. Sci. A: Polym. Chem., 14, 1915, 1976
  22. Doi YI, Murata M, Yano K, Ind. Eng. Chem. Prod. Res. Dev., 21, 580, 1982
  23. Sergeev SA, Butatov GD, Zakharov YI, Makromol. Chem., 185, 2377, 1984
  24. Pakkamen TT, Vahasarija E, Pakkamen TA, Fskola E, Sormanen P, J. Catal., 121, 248, 1990
  25. Soga K, Sano T, Ohnish R, Polym. Bull., 4, 157, 1979
  26. Soga K, Chen SI, Ohnish R, Polym. Bull., 8, 473, 1982
  27. Busico V, Corradini P, Demartino V, Proto A, Albizati E, Makromol. Chem., 187, 1115, 1986
  28. Seppala JV, Harkonen M, Luciani L, Makromol. Chem., 190, 2535, 1989
  29. Sergeeve SA, Bukatov GF, Zakharov VA, Makromol. Chem., 185, 2, 1984
  30. Petkov L, Komitov P, Eur. Polym. J., 20, 619, 1989
  31. Guastalla G, Gianninni U, Makromol. Chem. Rapid Commun., 4, 519, 1983