Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.3, 325-332, 1993
황산화 박테리아 Thiobacillus ferrooxidans에 의한 석탄의 생물학적 탈황
Microbial Desulfurization of Coal by Sulfur Oxidizing Bacteria Thiobacillus ferrooxidans
석탄의 무기황인 pyrite를 제거하기 위하여 chemoautotrophic, acidophilic, iron-oxidizing bacterium Thiobacillus ferrooxidans를 사용하였다. 석탄의 미생물 탈황에 사용된 시료는 한양 탄광에서 생산되는 무연탄이다. 석탄 입자의 크기, 농도, 초기 접종농도 및 염의 농도 등 여러 가지 공정 변수들이 탈황속도에 미치는 영향을 조사하였다. 10-70%(w/v)의 석탄 슬러리 농도에서 11-15일 동안에 약 80-98%의 pyritic sulfur를 제거할 수 있었다. 최대 탈황속도는 50%(w/v)의 석탄 슬러리 농도까지 선형적으로 증가하였고, 70%(w/v) 석탄 슬러리에서 1,117 mg pyritic-S/L·day의 높은 탈황속도를 얻었다. 미생물 탈황공정에서의 최적 조업 조건은 70%(w/v)의 석탄 슬러리 농도, 0.42 mm 이하의 석탄 입자와 109 cells/g-pyrite의 접종농도이다.
To remove pyritic sulfur from coal, chemoautotrophic, acidophilic, iron-oxidizing bacterium Thiobacillus ferrooxidans was employed. Coal samples used in all the experiments were an anthracite coal obtained from the Han Yang Mining Company. The effects of various process variables(such as coal pulp density, salt concentration, particle size and initial cell density) on the pyritic sulfur removal rate has been determined. About 80-98% of pyrite(FeS2) in coal could be removed by T. ferrooxidans within 11-15 days in a shake flask. The maximum pyritic sulfur removal rate increases linearly between 10 and 50%(w/v) of the pulp density and reaches a maximum level at 70%(w/v) of pulp density(1,117 mg-S/L·day). The optimum operating conditions are found to be a pulp density of 70%(w/v), particle size less than 0.42 mm, and initial cell concentration of 109 cells/g-pyrite in coal.
[References]
  1. Eliot RC, "Coal Desulfurization Prior to Combustion," Noyes Data Corp., 1978
  2. Meyers RA, "Coal Desulfurization," Marcel Dekker, Inc., New York, 1977
  3. Wheelock TD, "Coal Desulfurization: Chemical and Physical Methods,"; in American Chemical Society, Washington, D.C., 1977
  4. Andrews GF, Dorroch M, Hansson T, Biotechnol. Bioeng., 32, 81, 1988
  5. Beier E, "Micorbe-Assisted Pyrite Removal from Hard Coal with Due Consideration of Ensuing Alterations of the Organic Coal Substance" in "Bioprocessing and Biotreatment of Coal," Donald L. Wise, ed., Ma Dekker Inc., New York and Basel, 1990
  6. Ryu HW, Yoo HJ, Chang YK, Kim SD, "Microbial Desulfurization of Coal by Thiobacillus Ferrooxidans," in "Fluidized Bed an Three-Phase Reactors," Chun H.S. and Kim, S.D. Eds., Korea, 1992
  7. Beyer M, Ebner HG, Klein J, Appl. Microbiol. Biotechnol., 24, 34, 1986
  8. Beyer M, Ebner HG, Klein J, "Bacterial Desulfurization of German Hard Coal," in "Fundamental and Applied Biohydrometallurgy," Lawrence, R.R., Branikon, M.R. and Ebner, H.G., Eds., pp. 151-164, Elsevier, Amsterdam, 1986
  9. Chandra D, Mishra AK, "Removal of Sulfur from Assam Coals by Bacterial Means," in bioprocessing and Biotreatment of Coal, Donald L.W. ed., Marcel Dekker Inc., New York and Basel, 1990
  10. Detz CM, Barvinchak G, Min. Conger. J., 5, 75, 1979
  11. Gruder S, Genchev F, C.F. Acad. Bulg. Sci., 32, 353, 1979
  12. Huber TF, Ras C, Kossen NWF, "Design and Scale-up of a Reactor for the Microbial Desulphurization of Coal: A Kinetic Model for Bacterial Growth and Pyrite Oxidation," in Proceedings Third Europe Congress on Biotechnology, Muchen, Vol. 3, pp. 151-159, Verlag Chem. Weinheim-Deerfield Beach/Florida-Basel, 1984
  13. Olsen T, Ashman T, Torma D, Murr LE, "Desulfurization of Coal by Thiobacillus Ferrooxidans," in "Biogeochemistry ofAcient and M Environments," 693-703, Springer, Berlin, 1980
  14. Kargi F, Robinson JM, Appl. Environ. Microbiol., 44, 878, 1985
  15. Kargi F, Robinson JM, Biotechnol. Bioeng., 24, 2115, 1982
  16. Kargi F, Robinson JM, Biotechnol. Bioeng., 27, 2115, 1985
  17. Silverman MP, Lundgren DG, J. Bacteriol., 77, 642, 1959
  18. Muir MK, Andersen FN, Metallurgical Trans. B, 8, 5, 1977
  19. Karr C, "Analytical Method for Coal and Coal Product," Vol. I, 228-3, Academic Press, Inc. New York, 1978
  20. American Society for Testing and Materials: "Standard Method for Forms of Sulfur in Coal," ASTM Annual Book, D2492,05, American society for Testing and Materials, p. 350, Philadelphia, 1985
  21. Bos P, Huber TF, Kos CH, Ras C, Kuenen JG, "A Dutch Feasibility Study on Microbial Coal Desulphurization," in Fundamental an Applied Biohydrometallurgy, Lawrence, R.W., Branion, R.M.R.and Ebn, H.G. eds., pp. 129-150, Elsevier, Amsterdam, 1986
  22. Gruder S, Genchev F, C.R. Acad. Bulg. Sci., 32, 353, 1979
  23. Hoffmann MR, Faust BC, Panda FA, Koo HH, Tsuchiya HM, Appl. Environ. Microbiol., 42, 259, 1981
  24. Klein J, Beyer M, Afferden MV, Hodek W, Seewald FH, Wolff H, Fischer E, Juntgen H, "Coal in Biotechnology," in "Biotechnology, Vol. 6b," Rehm, H.J. and Reed, G. eds., VCH, Weinheim, frg. pp. 497-567, 1988