Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.3, 303-310, 1993
CNDO/2 MO 이론에 의한 H2 및 CO기체의 A-zeolite의 α-cage 투과성에 대한 고찰
CNDO/2 MO Studies of H2 and CO Gas Penetration through the α-Cage of the Cation Saturated A-Zeolite
기체분자가 A-zeolite의 -cage를 투과하는 현상을 이론적으로 연구하였다. 이런 기체분자의 침투계에 대한 전 potential 에너지는 8원환 모델에 대한 CNDO/2 MO 이론에 의하여 계산되었다. Na+으로 이온교환된 8원환계에 대한 수소와 일산화탄소 분자의 potential curve로부터 이들 기체의 투과가 용이할 것임을 알 수 있고 K+-와 Ca2+로 교환된 8원환에 대해서는 기체투과가 상당히 어려울 것을 나타내 주었다. 양이온의 위치는 침입분자들을 허용하기 위하여 스프링과 같이 탄력적이었으며, 양이온과 기체분자의 상호작용의 크기에 따라 이들분자의 통과를 위하여 각각 다른 활성화 에너지를 필요로 하고 있다. 기체분자의 침입시에 일어나는 양이온의 쏠림을 양이온 Mn+와 16번 산소와의 거리의 변화로 표현하였는데 대칭분자인 H2와 비대칭분자인 CO의 침투에 따른 양이온의 쏠림 경향이 각각 다르게 나타났으며, 2원자 분자의 첫 원자가 침입할 경우와 마지막 원자가 침입할 경우 일어나는 쏠림 경향은 침입분자의 종류에 따라 특징있게 나타났다.
Penetration of gas molecules through the -cage of A-zeolite was studied theoretically. Total potential energies of the gas penetrating the system were calculated by means of CNDO/2 MO theory with the 8-R window model. Potential curves for the Na+-8R with H2 and CO molecules indicated high possibilities of their penetration and those for the K+- and Ca2+-8R illustrated the difficulties of their going through the plane. Cation position was flexible as spring to allow intruding molecules but required certain amount of activation energies according to the cation gas molecule interaction. The dislocation of the cations within the 8-R window due to the foreign gas penetration were visualized by the variation of distance between cation to O16 atom and the extent of the dislocation of cations and their characteristics were very dependent on the constituents of the gas molecule.
[References]
  1. Kim Y, Seff K, J. Phys. Chem., 82, 1071, 1978
  2. Donald WB, "Zeolite Molecular Sieves," John Wiley and Sons, Inc., New York, p. 642, 1974
  3. Gregg SJ, Sing KSW, "Adsorption, Surface Area,and Porosity," 2nd Ed., Academic Press, London, p. 89, 1982
  4. Kadlec O, Dubinin MM, J. Colloid Interface Sci., 31, 479, 1969
  5. Flood EA, "The Solid-Gas Interface," Vol. 1, Dekker, New York, p. 54, 1967
  6. Burgess CGV, Everett DH, J. Colloid Sci., 33, 611, 1970
  7. Kim DH, Heo NH, Kim JT, HWAHAK KONGHAK, 29(6), 717, 1991
  8. Crank J, "The Mathmatics of Diffusion," 2nd ed., Clarendon Press, Oxford, p. 48, 1975
  9. Stejskal EO, Tanner JE, J. Chem. Phys., 42, 288, 1965
  10. Karger J, Pfeifer H, Z. Chemie, 16, 85, 1976
  11. Karger J, Caro J, J. Chem. Soc.-Faraday Trans., 73, 1363, 1977
  12. Donald WB, "Zeolite Molecular Sieves," John Wiley and Sons, Inc., New York, p. 635, 1974
  13. Donald WB, "Zeolite Molecular Sieves," John Wiley and Sons, Inc., New York, p. 638, 1974
  14. Donald WB, "Zeolite Molecular Sieves," John Wiley and Sons, Inc., New York, p. 633, 1974
  15. Lee JR, Heo NH, Kim DH, Kim JT, HWAHAK KONGHAK, 30(6), 710, 1992
  16. Donald WB, "Zeolite Molecular Sieves," John Wiley and Sons, Inc., New York, p. 84, 1974