Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.31, No.2, 222-228, 1993
단일노즐을 사용한 슬러리기포탑에서 상 체류량 및 액체의 축방향혼합특성
Phase Holdup and Axial Mixing Characteristics of Liquid Phase in a Slurry Bubble Column with a Single Nozzle
기체분산기로 단일노즐을 사용한 슬러리기포탑에서 상 체류량과 액체의 축방향혼합특성을 연구하였다. 실험은 공기-물-모래계에서 기체와 슬러리속도를 각각 0.962-15.312, 0.3457cm/sec로, 그리고 고체입자의 크기와 농도를 0.0068-0.046cm 직경, 0-0.20g/cm3로 변화시키면서 실시하였다. 실험결과, 슬러리계의 기체체류량은 공기-물계에서 보다 증가하였고 슬러리속도와 고체농도에 무관하였다. 또한 기체체류량을 기포의 상승속도로 해석한 결과, 기포의 종말속도는 다공판을 사용한 2상계에서 보다 감소되었다. 액체체류량은 기체속도와 고체농도가 증가할수록 감소하였으나 슬러리속도에는 무관하였다. 약 4cm/sec이상의 기체속도 범위에서 액체의 축방향분산계수는 공기-물계에서 보다 작았으며 다공판을 사용한 경우보다 증가되었다. 이 때 산출된 액체의 축방향분산계수는 다음과 같이 나타낼 수 있었다. Dsl(cm2/sec)=51Ug0.33Usl0.37
Phase holdup and axial mixing characteristics of liquid phase were investigated in a slurry bubbel column with a single nozzle as a gas distributor. In air-water-sand system, gas and liquid velocities ranged from 0.962 to 15.312cm/sec and 0 to 0.20g/cm3. Experimental results showed that gas holdup in slurry system was larger than that in air-water system, and it was not influenced by slurry velocity and solid concentration. Also, estimated terminal velocity of a bubble based on gas holdup data by using bubble rising velocity was lower than that in the two phase system with perforated plate. by contrast, liquid holdup decreased with increasing gas velocity and solid concentration, and it was not influenced by slurry velocity. At higher gas velocity(about 4cm/sec), axial dispersion coefficient of liquid phase in the slurry system was lower than that in the air-water system and it was larger than that for using perforated plate. In this conditions, estimated axial dispersion coefficient of liquid phase could be expressed as follows. Dsl(cm2/sec)=51Ug0.33Usl0.37
[References]
  1. Chen BH, Vallabh R, Ind. Eng. Chem. Process Des. Dev., 9, 121, 1970
  2. Nakanoh M, Yoshida Y, Ind. Eng. Chem. Process Des. Dev., 19, 190, 1980
  3. Steeman JWM, Kaarsemaker S, Hoftyzer PJ, Chem. Eng. Sci., 14, 139, 1961
  4. Voigt J, Hecht V, Schugerl K, Chem. Eng. Sci., 35, 1317, 1980
  5. Otake T, Tone S, Nakao K, Mitsuhashi Y, Chem. Eng. Sci., 32, 377, 1977
  6. Goto S, Kuwajima T, Okabe M, Okamoto R, Takamatsu A, J. Ferment. Technol., 557, 341, 1979
  7. Kato Y, Nishimaru A, Kadone H, Morooka S, Kag. Kog. Ronbunshu, 6, 614, 1980
  8. Chaudhary RV, Ramachandran RA, AIChE J., 26, 177, 1980
  9. Kara S, Kelkar BG, Shah YT, Carr NL, Ind. Eng. Chem. Process Des. Dev., 21, 584, 1982
  10. Deckwer WD, Louishi Y, Zaidi A, Malek M, Ind. Eng. Chem. Process Des. Dev., 19, 699, 1980
  11. Shah YT, "Gas-Liquid-Solid Reactor Design," McGraw-Hill, New York, 1979
  12. Smith DN, Ruether JA, Chem. Eng. Sci., 4, 741, 1985
  13. Smith DN, Ruether JA, Shah YT, Badgujar MN, AIChE J., 32, 426, 1986
  14. Govindarao VMH, Chidambaram M, AIChE J., 30, 842, 1984
  15. Hammer H, Int. Chem. Eng., 21, 173, 1981
  16. Parulekar SJ, Shah YT, Chem. Eng. J., 20, 21, 1980
  17. Nishigawa M, Yonezawa Y, Kayama T, Koyama K, Nagata S, J. Chem. Eng. Jpn., 9, 214, 1976
  18. Levenspiel O, "Chemical Reaction Engineering," 2nd ed., John Wiley & Sons, New York, 1972
  19. Joshi JB, Sharma MM, Chem. Eng. Commun., 6, 257, 1980
  20. Kato Y, Nishiwaki T, Fukuda T, Tanaka S, J. Chem. Eng. Jpn., 5, 112, 1972
  21. Pandit AB, Joshi JB, Rev. Chem. Eng., 2(1), 1, 1984
  22. Joshi JB, Sharma MM, Can. J. Chem. Eng., 56, 116, 1978
  23. Deckwer WD, Seperman Y, Malek M, Schmidt B, Ind. Eng. Chem. Process Des. Dev., 21, 231, 1982
  24. Feild RW, Davidson JF, Trans. Inst. Chem. Eng., 58, 228, 1980